PIANO NAZIONALE
DI RIPRESA E RESILIENZA

delle Ricerche

Finanziato Ministe_ro " : . _ .
dall'Unione europea dell’Universita i [taliadomani (] Consiglio Nazionale

NextGenerationEU e della Ricerca

Python geospatial data analysis

Saverio Mancino

Lesson Overview

This lesson is designed to provide a comprehensive exploration of scientific data visualization
and geospatial data processing using Python.

In this lesson you will learn how to: - Create and customize scientific plots using Matplotlib and
Seaborn; - Process, analyze, and visualize raster data with Rasterio; - Manage and visualize
vector data using Geopandas.

Objectives

By the end of this lesson, you should be able to:

Build and customize scientific plots using Matplotlib and Seaborn;
Process and visualize raster datasets using Rasterio;

« Handle vector data and perform spatial analysis with Geopandas;
Apply advanced visualization and geospatial processing techniques;

Complete practical exercises to reinforce your learning

Table of Contents
1. Matplotlib and Seaborn for Scientific Plots
2. Rasterio for Raster Processing and Visualization

3. Geopandas for Vector Processing and Visualization
4. Exercises

Open the notebook lesson

Open the lesson using the CL

https://www.spatial-ecology.net/docs/build/html/index.html
https://www.spatial-ecology.net/docs/build/html/PYTHON/index.html

cd /media/sf_LVM_shared/my_SE_data/exercise
jupyter-1lab Python_geospatial_data_analysis_SM.ipynb

Library dependencies fixing

Let’s check all dependency compatibilities between numpy pandas matplotlib seaborn
rasterio fiona scipy shapely and pyproj .
We need to make sure to use the intercompatible version of each library.

[1: !'pip show numpy pandas matplotlib seaborn rasterio fiona shapely pyproj scipy | grep

Version:
Version: 1.26.4
Version: 1.3.5
Version: 3.10.1
Version: 0.13.2
Version: 1.3.4
Version: 1.8.22
Version: 1.8.5
Version: 3.4.0
Version: 1.15.0

Run this command in the terminal, to remove the version of matplotlib installed via the
operating system’s package manager (APT) instead of with PIP.

sudo apt remove python3-matplotlib

Them procede to reinstall from scratch all libraries.

[1: !'pip uninstall -y numpy pandas matplotlib seaborn rasterio fiona shapely pyproj scipy

@ITIN=RIS

[1

Found existing installation: numpy 2.2.4
Uninstalling numpy-2.2.4:

Successfully uninstalled numpy-2.2.4
Found existing installation: pandas 2.2.3
Uninstalling pandas-2.2.3:

Successfully uninstalled pandas-2.2.3
Found existing installation: matplotlib 3.10.1
Uninstalling matplotlib-3.10.1:

Successfully uninstalled matplotlib-3.10.1
Found existing installation: seaborn 0.13.2
Uninstalling seaborn-0.13.2:

Successfully uninstalled seaborn-0.13.2
Found existing installation: rasterio 1.4.3
Uninstalling rasterio-1.4.3:

Successfully uninstalled rasterio-1.4.3
Found existing installation: fiona 1.10.1
Uninstalling fiona-1.10.1:

Successfully uninstalled fiona-1.10.1
Found existing installation: shapely 2.0.7
Uninstalling shapely-2.0.7:

Successfully uninstalled shapely-2.0.7
Found existing installation: pyproj 3.7.1
Uninstalling pyproj-3.7.1:

Successfully uninstalled pyproj-3.7.1
Found existing installation: scipy 1.15.2
Uninstalling scipy-1.15.2:

Successfully uninstalled scipy-1.15.2

I'pip install --user numpy==1.26.4

I'pip install --user shapely==1.8.5

Ipip install --user scipy==1.15.0

I'pip install --user pandas matplotlib seaborn rasterio fiona pyproj

#lpip install --upgrade --force-reinstall pandas matplotlib seaborn rasterio fiona

pyproj

@ ITIN=RIS

Collecting numpy==1.26.4

Downloading numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

(18.2 MB)

0:00:010:01:01
Installing collected packages:

18.2/18.2 MB 11.2 MB/s eta 0:00:00m eta

numpy

ERROR: pip's dependency resolver does not currently take into account all the packages
that are installed. This behaviour is the source of the following dependency conflicts.
scikit-image 0.25.2 requires scipy>=1.11.4, but you have scipy 1.8.0 which is

incompatible.

Successfully installed numpy-1.26.4

Requirement already satisfied:
Collecting scipy==1.15.0

shapely==1.8.5 in /usr/lib/python3/dist-packages (1.8.5)

Downloading scipy-1.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

(40.6 MB)

0:00:01[36m0:00:01

Requirement already satisfied:
/home/user/.local/lib/python3.
Installing collected packages:

40.6/40.6 MB 10.7 MB/s eta 0:00:00m eta

numpy<2.5,>=1.23.5 in
10/site-packages (from scipy==1.15.0) (1.26.4)
scipy

Successfully installed scipy-1.15.0

Requirement already satisfied:
Collecting matplotlib

pandas in /usr/1lib/python3/dist-packages (1.3.5)

Using cached matplotlib-3.10.1-cp310-cp310-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB)

Collecting seaborn

Using cached seaborn-0.13.2-
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
Requirement already satisfied:
/home/user/.local/lib/python3.
Requirement already satisfied:

py3-none-any.whl (294 kB)
rasterio in /usr/lib/python3/dist-packages (1.3.4)
fiona in /usr/1lib/python3/dist-packages (1.8.22)
pyproj in /usr/1lib/python3/dist-packages (3.4.0)
packaging>=20.0 in
10/site-packages (from matplotlib) (24.2)
pillow>=8 in /home/user/.local/lib/python3.10/site-

packages (from matplotlib) (11.1.0)

Requirement
/home/user/.
Requirement
/home/user/.
Requirement
/home/user/.
Requirement

already satisfied:
local/lib/pythons3.
already satisfied:
local/1lib/python3.
already satisfied:
local/lib/pythons3.
already satisfied:
/home/user/.local/lib/python3.
Requirement already satisfied:
packages (from matplotlib) (O.
Requirement already satisfied:
/home/user/.local/lib/python3.
Requirement already satisfied:
packages (from matplotlib) (1.
Requirement already satisfied:
rasterio) (59.6.0)

Requirement already satisfied:
packages (from rasterio) (8.1.
Requirement already satisfied:
packages (from rasterio) (0.7.
Requirement already satisfied:
packages (from rasterio) (1.1.
Requirement already satisfied:
rasterio) (1.4.7)

Requirement already satisfied:
(from rasterio) (25.3.0)
Requirement already satisfied:
(from rasterio) (2.4.0)
Requirement already satisfied:

packages (from rasterio) (2025.

Requirement already satisfied:
packages (from fiona) (1.17.0)
Requirement already satisfied:
(2.5.0)

Installing collected packages:

fonttools>=4.22.0 in
10/site-packages (from matplotlib) (4.56.0)
pyparsing>=2.3.1 in
10/site-packages (from matplotlib) (3.2.3)
contourpy>=1.0.1 in
10/site-packages (from matplotlib) (1.3.1)
python-dateutil>=2.7 in
10/site-packages (from matplotlib) (2.9.0.posto)
cycler>=0.10 in /home/user/.local/lib/python3.10/site-
12.1)
kiwisolver>=1.3.1 in
10/site-packages (from matplotlib) (1.4.8)
numpy>=1.23 in /home/user/.local/lib/python3.10/site-
26.4)
setuptools in /usr/lib/python3/dist-packages (from

click>=4.0 in /home/user/.local/lib/python3.10/site-

8)

cligj>=0.5 in /home/user/.local/1lib/python3.10/site-
2)

click-plugins in /home/user/.local/lib/python3.10/site-
1)

snuggs>=1.4.1 in /usr/1lib/python3/dist-packages (from
attrs in /home/user/.local/lib/python3.10/site-packages
affine in /home/user/.local/lib/python3.10/site-packages
certifi in /home/user/.local/lib/python3.10/site-
1iiiil.7 in /home/user/.local/1lib/python3.10/site-

munch in /usr/1lib/python3/dist-packages (from fiona)

matplotlib, seaborn

Successfully installed matplotlib-3.10.1 seaborn-0.13.2

@ITIN=RIS

[1: !'pip show numpy pandas matplotlib seaborn rasterio fiona shapely pyproj | grep

Version:
Version: 1.26.4
Version: 1.3.5
Version: 3.10.1
Version: 0.13.2
Version: 1.3.4
Version: 1.8.22
Version: 1.8.5
Version: 3.4.0

1 - Matplotlib and Seaborn for Scientific Plots

Data visualization is a crucial aspect of scientific computing, allowing researchers to explore,
analyze, and communicate insights from data.
Python provides powerful libraries for visualization, with matplot1ib and seaborn being two of

the most widely used.

o Matplotlib: A low-level library that provides detailed control over plot elements.
« Seaborn: Built on top of Matplotlib, Seaborn simplifies complex visualizations and adds
aesthetically pleasing statistical plots.

Introduction to Matplotlib

matplotlib is a comprehensive library for creating static, animated, and interactive

visualizations in Python.
It provides a MATLAB-like interface and is widely used for generating plots such as line graphs,
scatter plots, bar charts, and more.

@ITIN=RIS

[1: ## imports
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Generate some data

x1 = np.linspace(0, 10, 100)

y1l = np.sin(x1)

X2 = np.linspace(0, 10, 100)

y2 = np.cos(x2)

x3 = np.linspace(0, 10, 100)

y3 = np.tan(x3)

Create a basic line plot

plt.figure(figsize=(15, 6))

plt.plot(x1, yi1, label='sin(x)', color='blue', linewidth=2)
plt.plot(x2, y2, label='cos(x)', color='red', linewidth=2)
plt.plot(x3, y3, label='tan(x)', color='green', linewidth=2)
plt.xlabel('X Axis'")

plt.ylabel('Y Axis'")

plt.title('Basic Line Plot of sin(x)'")

plt.legend()

plt.grid(True)

plt.show()

Basic Line Plot of sin(x)

1.00 A = sin(x)
— C0S(X)
0.75 A
0.50

0.25 A

0.00 A

Y Axis

—0.25 A

—0.50 1

—0.75

—1.00

X Axis

For any kind of plot, besides visualization you can also save the result to disk.
You just need to replace: >plt.show()

with

plt.savefig(‘plot_name.png’, dpi=300) # Saves the plot as a PNG with 300 DPI resolution
plt.close()

Now let’s try plotting something based on the dataset we downloaded and used in the previous
lesson.
We can try plotting time/temperature diagram.

@ITIN=RIS

[1: ## Read data

file_path = "files/Dati_Meteo_Giornalieri_Stazione
df = pd.read_csv(file_path,

Data preparation

sep=",

', encoding='utf-8")

Convert date column in dd/mm/yyyy format

df ['DATA']

Convert average temperature
df['TM'] = df['TM'].replace({',

'™

separator commas with dots

df['TM'] = pd.to_numeric(df['TM'], errors='coerce')

parsing will be set to NaN

Plot

= pd.to_datetime(df['DATA'], format='%d/%m/%Y")

I

regex=True)

|.|},

plt.figure(figsize=(18, 9)) # set the graph size
plt.plot(df['DATA'],# x axis
df['TM'], # y axis
line color
marker='"', # point marker
linestyle="'-"', # line style
markersize=4, # line size
alpha=0.5 # visibility

color=

)

Labels and title

'red',

plt.xlabel("Date\n (YYYY\MM)'")
plt.ylabel("Temperature\n (°C)")
plt.title("Location:

range:

Grid improvements

linestyle='--"', alpha=0.5)

Location: Matera (IT)

Graph: Daily Temperature (12:00 AM GMT+1)

Time range: 12/2021 - 08/2022

Matera (IT)\n Graph: Daily Temperature
12/2021 - 08/2022")

_Matera.csv"

Convert to numeric,

Force the replace of digital

invalid

(12:00 AM GMT+1)\n Time

plt.grid(axis='y"',
plt.show()
354
|
25
g 20 4
;:5.
15]
I
f
10 / .|\|
I\|| I\ |'A'I\|L/\\/1
5]
ol

H |h\.

I\ J' \| rJI

V|||
U

202112 2022-01

2022.02

2022-04 2022-05
Date

(YOrAMM)

2022.03

We can also represent data with other types of graphs.

2022-06 202207

2022-08

@ ITIN=RIS

Let's represent Matera Temperature distibution with a histogram.

[1: #Histogram settings

plt.figure(figsize=(18,9)) # set the graph size
plt.hist(df['TM'], # data
bins=20, # number of bins
color="'blue', # bar color
edgecolor="white', # bar edges color
alpha=0.7 # visibility
)
Labels
plt.xlabel("Temperature\n (°C)")
plt.ylabel("Frequency")
plt.title("Location: Matera (IT)\n Graph: Temperature Distribution\n Time range:
12/2021 - 08/2022")
plt.grid(axis='y")
plt.show()
Location: Matera (IT)

Graph: Temperature Distribution
Time range: 12/2021 - 08/2022

7

Frequency

20

TEmperature
(e

And a scatter plot of Matera Temperature vs Humidity.

@ ITIN=RIS

[1: ## Scatter Plot - Temperature vs Humidity
#Scatter plots show relationships between two variables.
Convert average temperature 'TM'
df['UM'] = df['UM'].replace({',"': ".'},
separator commas with dots
df['UM'] = pd.to_numeric(df['UM'], errors='coerce')
parsing will be set to NaN

regex=True)

plt.figure(figsize=(18,14))
plt.scatter(df['TM'], # x axis
df['UM'], # y axis
alpha=0.6, # transparency
color="green' # dot color
)
plt.xlabel("Temperature\n (°C)")
plt.ylabel("Humidity\n (%)")

Convert to numeric,

Force the replace of digital

invalid

plt.title("Location: Matera (IT)\n Graph: Temperature vs Humidity\n Time range:

12/2021 - 08/2022")
plt.grid(True)

plt.show()
Location: Matera (IT)
Graph: Temperature vs Humidity
Time range: 12/2021 - 08/2022
100
°
]
® e ® o
° °
.
]
o°
» []
. - ° °
a0 &
° . .
oo .
e s °
e ®
° °, °
]
. ® e .
.
°
° .
[]
[]
, @ . S —
2 ®ee L] °
2 . ° e © e .
° ° o %o ® °
N e o .
© e ® e
[° * L]
o ® ° e o © .
é .® .
L . ® e, % . °
® ° ° °
40 L d & '] L]
.
] ']
L] ° L) *l e °
L] 02 °
° . ° * e . e °
° . °
°
° °
. se 0o @ _ 9
e 8 g
.]
° ° L T
. .
0 ®
o
[]
[
0 H) 5 o 5 0 3
TEmperature
]

Seaborn: Enhanced Data Visualization

seaborn is based on matplotlib , but provides more fancy and informative visualizations.

We can represent a similar histogram of Matera Temperature distibution but enhanced with a

trend curve obtained with a Kernel Density Estimation.

@ ITIN=RIS

[1: import seaborn as sns

plt.figure(figsize=(18,9))
sns.histplot(df['TM'], #data
bins=30, # bins
kde=True, # Kernel Density Estimation
edgecolor="'white', # bar edges color
color="blue" # bar color
)
plt.title("Location: Matera (IT)\n Graph: Temperature Distribution with KDE trend
(Seaborn)\n Time range: 12/2021 - 08/2022")
plt.xlabel("Temperature\n (°C)")
plt.ylabel("Frequency")
plt.show()

Location: Matera (IT)
Graph: Temperature Distribution with KDE trend (Seaborn)
Time range: 12/2021 - 08/2022

175

Freguency

5.0

25

0.0 -

0

TEmperature
(°c)

We can plot also other particular grapgh.

For instance boxplots are useful for summarize the distribution of a variable and highlight
outliers.

@ ITIN=RIS

[1: ### Seaborn - Box Plot of Temperature
#Box plots summarize the distribution of a variable and highlight outliers.

Create a two side boxplot figure
fig, axes = plt.subplots(1, 2, figsize=(18, 6))

Temperature boxplot

sns.boxplot(y=df['TM'], color='orange', ax=axes[0])
axes[0].set_ylabel("Temperature\n (°C)")
axes[0].set_title("Boxplot of Temperature (Seaborn)")

Umidity Boxplot

sns.boxplot(y=df['UM'], color='lightblue', ax=axes[1])
axes[1l].set_ylabel("Humidity\n (%)")
axes[1l].set_title("Boxplot of Humidity (Seaborn)")

plt.show()

Boxplot of Temperature (Seaborn) Boxplot of Humidity (Seaborn)

]

it

]

Q)
(%)

Humidity

TEmperature
a
&

Here is an example of a Climate Heatmap done again with seaborn to show the variation of
monthly average temperatures in different cities.

For this example, we use some randomly generated temperature data for five Italian cities, to
create a colored Heatmap with the average monthly temperatures.

@ ITIN=RIS

[1

Generate

data = {
'City':
'Jan':

the number
'"Feb':
'Mar':
"Apr':
'May':
'Jun':
"Jul':
'Aug':
'Sep':
'Oct':
"Nov':
'Dec':

random climate data (average monthly temperatures in different cities)

[1

np
of

Roma',

'Milano', 'Napoli',

the columns
randint(1, 12, 5),

.random.
.random
.random.
.random.
.random.
.random.
.random.
.random.
.random.
.random.
.random.

DataFrame creation
df = pd.DataFrame(data)
df .set_index('City', inplace=True)

Heatmap Creation
plt.figure(figsize=(15, 12))

sns.heatmap(df, annot=True, cmap='coolwarm',

randint (10, 22,
randint (15, 28,
randint (20, 33,
randint (25, 37,
randint (24, 36,
randint (18, 30,
randint(12, 22,

.randint(5, 18, 5),

5),
5),
5),
5),
5),
5),
5),

randint(5, 15, 5),
randint(0, 10, 5)

the format as integer with no decimals

Title and labels
plt.title('Average Monthly Temperatures (°C) in Different Italian Cities.',
fontsize=14)
plt.ylabel('Cities")
plt.xlabel('Months'")

plt.show()

'Torino', 'Palermo'],
.random.randint(0, 10, 5), # random T°C between 0 and 10, for 5 times as

linewidths=0.5, fmt="d") # fmt="d" sets

@ ITIN=RIS

Average Monthly Temperatures (*C) in Different Italian Cities.

Roma

Milano

Cities
Napaoli

Tring

Palermo

Jan M.Iar Apr May Juni Jul Aug Sep

Manths

2 - Rasterio for Raster Processing and Visualization

Now we'll explore Rrasterio , a powerful Python library designed for efficient reading, writing,

and processing of geospatial raster data.
We will focus on raster processing, spatial filtering, and visualization techniques.

rascerio

@ ITIN=RIS

Introduction

Rasterio simplifies handling various raster formats (e.g., GeoTIFF, jp2, VRT etc) by providing a
user-friendly interface to interact with geospatial data.

Its integration with other libraries (such as NumPy, SciPy, and Matplotlib) makes it a versatile
tool in the field of remote sensing and geocomputation.

In this lesson, we will:

« Learn how to read and inspect raster metadata.

« Explore manipulation techniques, including band extraction, spatial filtering (moving average,
Sobel), and masking.

« Implement advanced visualization methods to generate false-color composites and perform
side-by-side comparisons of original and filtered data.

Reading and Inspecting Rasters

Raster data formats like GeoTIFF and VRT are staples in geospatial analysis. A GeoTIFF contains
embedded georeferencing information, while a VRT (Virtual Raster) allows for flexible
mosaicking and on-the-fly processing.

Rasterio provides efficient access to these formats, letting you inspect metadata (dimensions,
coordinate reference system, number of bands) and load raster data into NumPy arrays.

If rasterio or some of its features connected to gdal doesn’t work, do again the installations
with pip command:

I'pip show rasterio

lapt show gdal-bin libgdal-dev

'pip install rasterio

Isudo apt update

Isudo apt install gdal-bin libgdal-dev

If rasterio ison, let’s try to open a Sentinel-2 multispectral raster image, loading it and printing
Raster Metadata and visualize all 3 RGB bands.
In this case we will open all 3 RGB band .jp2 images, starting from Red.

Red Band (band 04) is useful for identifying vegetation types, soils and urban (city and town)

areas because it is strongly reflected by dead foliage.
It has limited water penetration and doesn’t reflect well from live foliage with chlorophyll.

@ITIN=RIS

[1: # Import necessary libraries
import os
import rasterio
from rasterio.plot import show
import matplotlib.pyplot as plt

Load the Sentinel2 jp2 image files

S2root =
'files/S2B_MSIL2A_20250309T094039_N0511_R036_T34TBK_20250309T120119.SAFE/GRANULE/L2A_T3<

Band_04_file = f"{S2root}T34TBK_20250309T094039_B04_10m.jp2" # red 16m

lgdalwarp -tr 100 100 -r bilinear
files/S2B_MSIL2A_20250309T094039_N0511 R036_T34TBK _20250309T120119.SAFE/GRANULE/L2A_T341
files/S2B_MSIL2A_20250309T094039_N0511_R036_T34TBK_20250309T120119.SAFE/GRANULE/L2A_T341
Band_04_file_100 = f"{S2root}T34TBK_20250309T094039_B04_100m.]jp2" # red 100m (for low
memory plotting)

Band_03_file = f"{S2root}T34TBK_20250309T094039_B03_10m.jp2" # green 10m

lgdalwarp -tr 100 100 -r bilinear
files/S2B_MSIL2A_20250309T094039 N0511 R0O36_T34TBK 20250309T120119.SAFE/GRANULE/L2A T341
files/S2B_MSIL2A_20250309T094039 _N0511 R0O36_T34TBK 20250309T120119.SAFE/GRANULE/L2A_T341
Band_03_file_100 = f"{S2root}T34TBK_20250309T094039_B03_100m.jp2" # green 100m (for

low memory plotting)

Band_02_file = f"{S2root}T34TBK _20250309T094039 B02_10m.jp2" # blue

lgdalwarp -tr 100 100 -r bilinear
files/S2B_MSIL2A_20250309T094039 N0O511 R0O36_T34TBK 20250309T120119.SAFE/GRANULE/L2A T341
files/S2B_MSIL2A_20250309T094039 N0O511 R0O36_T34TBK 20250309T120119.SAFE/GRANULE/L2A T341
Band_02_file_100 = f"{S2root}T34TBK_20250309T094039 B02_100m.jp2" # blue 100m (for low
memory plotting)

Band_08_file = f"{S2root}T34TBK_20250309T094039_B08_10m.jp2" # NIR

lgdalwarp -tr 100 100 -r bilinear
files/S2B_MSIL2A_20250309T094039_N0511_R036_T34TBK_20250309T120119.SAFE/GRANULE/L2A_T341
files/S2B_MSIL2A_20250309T094039_N0511_R036_T34TBK_20250309T120119.SAFE/GRANULE/L2A_T341
Band_08_file_100 = f"{S2root}T34TBK_20250309T094039_B08_100m.jp2" # NIR 100m (for low
memory plotting)

RGB_file = f"{S2root}T34TBK_20250309T094039_TCI 10m.jp2"

lgdalwarp -tr 100 100 -r bilinear
files/S2B_MSIL2A_20250309T094039_N0511 R0O36_T34TBK 20250309T120119.SAFE/GRANULE/L2A_T341
files/S2B_MSIL2A_20250309T094039_N0511 R0O36_T34TBK 20250309T120119.SAFE/GRANULE/L2A_T341
RGB_file_100 = f"{S2root}T34TBK_20250309T094039_TCI_100m.jp2" # RGB 100m (for low
memory plotting)

#u#u## Should the kernel crash during plotting, change the raster to be plotted from
the 10m resolution version '*_10.jp2' to the downscaled 100m version '*_100.jp2' to
avoid the memory-related problem.

print(f"\n\
RED BAND SPECS:\n\
band: B04 - red\n\
Resolution = 10m/px\n\
Central wavelength = 665nm\n\
Bandwidth = 30nm \n\
")
@ ITIN=RIS

Open the raster file and inspect its metadata

with rasterio.open(Band_04_file_100) as src:
Display metadata information
print("Metadata:")
print(src.meta)

Display number of bands and raster dimensions
print("Number of bands:", src.count)
print("Dimensions:", src.width, "x", src.height)

Read and display the first band (for visualization)

bandl = src.read(1)

plt.figure(figsize=(18, 16))

plt.title(f"Locality: Lecce (IT) | Date: 2025-03-09 | Platform: Sentinel-2 |
Band: 04")

plt.imshow(band1l, cmap='Reds"')

plt.colorbar(label="'Pixel Values')

plt.show()

ERROR 1: Output dataset
files/S2B_MSIL2A_20250309T094039_N0511 RO36_T34TBK 20250309T120119.SAFE/GRANULE/L2A T34T
exists,

but some command line options were provided indicating a new dataset

should be created. Please delete existing dataset and run again.

ERROR 1: Output dataset
files/S2B_MSIL2A_20250309T094039_N0511 R0O36_T34TBK 20250309T120119.SAFE/GRANULE/L2A T34T
exists,

but some command line options were provided indicating a new dataset

should be created. Please delete existing dataset and run again.

ERROR 1: Output dataset
files/S2B_MSIL2A_20250309T094039_N0511 RO36_T34TBK 20250309T120119.SAFE/GRANULE/L2A T34T
exists,

but some command line options were provided indicating a new dataset

should be created. Please delete existing dataset and run again.

ERROR 1: Output dataset
files/S2B_MSIL2A_20250309T094039_N0511 RO36_T34TBK 20250309T120119.SAFE/GRANULE/L2A T34T
exists,

but some command line options were provided indicating a new dataset

should be created. Please delete existing dataset and run again.

ERROR 1: Output dataset
files/S2B_MSIL2A_20250309T094039_N0511 RO36_T34TBK 20250309T120119.SAFE/GRANULE/L2A T34T
exists,

but some command line options were provided indicating a new dataset

should be created. Please delete existing dataset and run again.

RED BAND SPECS:

band: B04 - red

Resolution = 10m/px
Central wWavelength = 665nm
Bandwidth = 30nm

Metadata:
{'driver': 'JP20penJPEG', 'dtype': 'uint16', 'nodata': None, 'width': 1098, 'height':
1098, 'count': 1, 'crs': CRS.from_epsg(32634), 'transform': Affine(100.0, 0.0,
199980.0,

0.0, -100.0, 4500000.0)}
Number of bands: 1
Dimensions: 1098 x 1098

< >

@ ITIN=RIS

Locality: Lecce (IT) | Date: 2025-03-09 | Platform: Sentinel-2 | Band: 04

800D

2004 =
7000

6000
400 A

5000

Pixel Values

600 4

4000

3000

2000
1000 4

0 200 400 £00 800 1000

1000

Green band (band 03) gives an excellent contrast between clear and turbid (muddy) water, and
penetrates clear water fairly well. It helps in highlighting oil on water surfaces, and vegetation. It
reflects green light stronger than any other visible color. Man-made features are still visible.

@ITIN=RIS

[1

print(f"\n\

GREEN BAND SPECS:\n\

band: B03 - green\n\
Resolution = 10m/px\n\
Central wavelength = 600nm\n\
Bandwidth = 36nm \n\

")

Open the raster file and inspect its metadata
with rasterio.open(Band_03_file_100) as src:
Display metadata information
print("Metadata:")
print(src.meta)

Display number of bands and raster dimensions
print("Number of bands:", src.count)
print("Dimensions:", src.width, "x", src.height)

Read and display the first band (for visualization)
bandl = src.read(1)
plt.figure(figsize=(18, 16))

plt.title(f"Locality: Lecce (IT) | Date: 2025-03-09 | Platform: Sentinel-2 |

Band: 03")
plt.imshow(band1, cmap='Greens')
plt.colorbar(label="'Pixel Values')
plt.show()

GREEN BAND SPECS:

band: B03 - green
Resolution = 10m/px
Central Wavelength = 600nm
Bandwidth = 36nm

Metadata:
{'driver': 'JP20penJPEG', 'dtype': 'uint16', 'nodata': None, 'width': 1098,

'height':

1098, 'count': 1, 'crs': CRS.from_epsg(32634), 'transform': Affine(100.0, 0.0,

199980.0,

0.0, -100.0, 4500000.0)}
Number of bands: 1
Dimensions: 1098 x 1098

@ ITIN=RIS

Locality: Lecce (IT) | Date: 2025-03-09 | Platform: Sentinel-2 | Band: 03

BOOD

2009 =

7000

6000

"
5000 3

Pixel Val

600 4

4000

800 4

3000

2000
1000

T T T T T
o 200 400 600 800 1000

=1000

Blue Band (band 02) is useful for soil and vegetation discrimination, forest type mapping and
identifying man-made features. It is scattered by the atmosphere, it illuminates material in
shadows better than longer wavelengths, and it penetrates clear water better than other colors.
It is absorbed by chlorophyll, which results in darker plants.

@ITIN=RIS

[1

print(f"\n\

BLUE BAND SPECS:\n\

band: B02 - blue\n\
Resolution = 10m/px\n\
Central wavelength = 492nm\n\
Bandwidth = 66nm \n\

")

Open the raster file and inspect its metadata
with rasterio.open(Band_02_file_100) as src:
Display metadata information
print("Metadata:")
print(src.meta)

Display number of bands and raster dimensions
print("Number of bands:", src.count)
print("Dimensions:", src.width, "x", src.height)

Read and display the first band (for visualization)
bandl = src.read(1)
plt.figure(figsize=(18, 16))

plt.title(f"Locality: Lecce (IT) | Date: 2025-03-09 | Platform: Sentinel-2 |

Band: 02")
plt.imshow(band1, cmap='Blues"')
plt.colorbar(label="'Pixel Values')
plt.show()

BLUE BAND SPECS:

band: B02 - blue
Resolution = 10m/px
Central Wavelength = 492nm
Bandwidth = 66nm

Metadata:
{'driver': 'JP20penJPEG', 'dtype': 'uint16', 'nodata': None, 'width': 1098,

'height':

1098, 'count': 1, 'crs': CRS.from_epsg(32634), 'transform': Affine(100.0, 0.0,

199980.0,

0.0, -100.0, 4500000.0)}
Number of bands: 1
Dimensions: 1098 x 1098

@ ITIN=RIS

Locality: Lecce (IT) | Date: 2025-03-09 | Platform: Sentinel-2 | Band: 02

0
8000
00 -
» 7000
200] 6000
"
o
2
5000 3
o
=
a
600
4000
800 S
3000
g
. :."
o
1000 4 2000
0 200 400 600 800 1000
1000

In the same way we can display the RGB multiband image

@ ITIN=RIS

[1

import rast
import nump

print(f"\n\
RGB IMAGE S
Resolution

")

erio
y as np

PECS:\n\
= 10m/px\n\

Open the raster file and inspect its metadata
with rasterio.open(RGB_file_100) as src:
ge = src.read()

rgb_ima

Display metadata information

print("
print(s

Metadata:")
rc.meta)

Display number of bands and raster dimensions
print("Number of bands:", src.count)
src.width, "x", src.height)

print("

Dimensions:",

Display the RGB image
plt.figure(figsize=(18, 16))

plt.tit
Band: RGB")

le("Locality:

Lecce (IT) | Date:

Converts array to (height, width, band)
plt.imshow(np.moveaxis(rgb_image, 0, -1))

plt.axi

s("off")

plt.show()

RGB IMAGE SPECS:
Resolution = 10m/px

Metadata:
{'driver':

'JP20penJPEG',

1098, 'count': 3, 'crs':

199980.0,
0.0,

Dimensions:

2025-03-09 | Platform: Sentinel-2 |

for imshow()

'dtype': 'uint8', 'nodata': None, 'width': 1098, 'height':

CRS.from_epsg(32634),

-100.0, 4500000.0)}%
Number of bands: 3

1098 x 1098

"transform': Affine(100.0, 0.0,

@ ITIN=RIS

Locality: Lecce (IT) | Date: 2025-03-09 | Platform: Sentinel-2 | Band: RGB

Often in satellite geospatial analyses, the study focus on one or more specific areas.

Therefore, it is necessary to know how to crop the image to the right portion needed for the

case study, to avoid both overcomputing operations (often costly in terms of time, memory and

energy) and loss of detail.

For instance, in this case we focus on the coastal area of the “Le Cesine” Nature Reserve, so we

will use a common crop polygon shapefile for the crop operation.

For this example instead of using a pre-existing shape we created it using Map Polygon-Polyline

tool, a crude but simple, practical and fast web tool. Therefore we will see in advance the
geopandas tool in action along with the use of geometry_mask from rasterio .

@ITIN=ERIS

https://www.keene.edu/campus/maps/tool/
https://www.keene.edu/campus/maps/tool/

[1: import geopandas as gpd
from shapely.geometry import Polygon

Definition of the area of "Riserva Naturale Le Cesine"

CRS: EPSG:4326

just 4 vertexes (lat/long) listed clockwise starting from the lower left, to create
a simple rectangular-ish bounding box

bounding_box = [
(18.3238220, 40.3897044), # LL
(18.2901764, 40.3677353), # LR
(18.3571243, 40.3208965), # UL
(18.3900833, 40.3460208), # UR
(18.3238220, 40.3897044), # polygon closing

1
polygon = Polygon(bounding_box)

The polygon needs to be setted as EPSG:4326 - Geographic coordinates (lat/long in
decimal degrees).

then converted in EPSG:32634 - Projected coordinates (meters, necessary to align and
match with Sentinel2 CRS).

gdf
gdf

gpd.GeoDataFrame({'geometry': [polygon]}, crs='EPSG:4326"')
gdf.to_crs('EPSG:32634")

Save the polygon as shapefile
bbox_path = 'files/Polygon_Natural Reserve_Le_Cesine/Le_Cesine_BBox.shp'
gdf.to_file(bbox_path)

Now we can procede to cropping operation

@ ITIN=RIS

[1

import rasterio

import geopandas as gpd

import matplotlib.pyplot as plt
import numpy as np

from rasterio.mask import mask

Load the bounding box
bbox_gdf = gpd.read_file(bbox_path)

Double check images have the same CRS
with rasterio.open(RGB_file) as src:
if bbox_gdf.crs != src.crs:
bbox_gdf = bbox_gdf.to_crs(src.crs)

Extract bounding box geometry
bbox_geom = [bbox_gdf.geometry.unary_union] #return the union of multple

geometries if any

Apply the crop using the mask

cropped_image, cropped_transform = mask(src, bbox_geom, crop=True, nodata=0) # if

you want a white backgound in the print set ', nodata=255'

Update the metadata for the cropped image
cropped_meta = src.meta.copy()
cropped_meta.update({
"height": cropped_image.shape[1],
"width": cropped_image.shape[2],
"transform": cropped_transform

1)

Save the cropped image

cropped_path = 'files/Lecce_RGB_cropped.tif'

with rasterio.open(cropped_path, 'w', **cropped_meta) as dst:
dst.write(cropped_image)

Visualize a small preview of the cropped image
plt.figure(figsize=(18, 16))

plt.title("Cropped area")
plt.imshow(np.moveaxis(cropped_image, 0, -1))
plt.axis("off")

plt.show()

@ ITIN=RIS

Cropped area

We can also visualize it in a more scientific/fancy way!

®ITIN=ERIS

from matplotlib.patches import FancyArrow

Extract spatial information
left, bottom = cropped_transform * (0, 0)
right, top = cropped_transform * (cropped_image.shape[2], cropped_image.shape[1l])

Display the cropped image with map features
fig, ax = plt.subplots(figsize=(18, 16))
plt.title("Study Area: Riserva Naturale Le Cesine")

Show image coordinates and white background for NoData
ax.imshow(np.moveaxis(cropped_image, 0, -1), extent=(left, right, bottom, top))

Add coordinate axes
ax.set_xlabel("Easting (m)")
ax.set_ylabel("Northing (m)")

Add a north arrow
arrow = FancyArrow(0.95, 0.90, 0, 0.05, transform=ax.transAxes,
color="black", width=0.02, head_width=0.04, head_length=0.02)
ax.add_patch(arrow)
ax.text(0.94, 0.97, 'N', transform=ax.transAxes, fontsize=15, color='black')

Add a scale bar

scalebar_length = 1000 # meters

ax.plot([right - 1300, right - 300], [bottom + 500, bottom + 500], color='black',
linewidth=3)

ax.text(right - 1200, bottom + 750, f"{scalebar_length} m", fontsize=15)

plt.grid(visible=True, 1linestyle=':"', linewidth=0.4, color='black') # Add grid for

better readability
plt.show()

@ ITIN=RIS

1e6 Study Area: Riserva Naturale Le Cesine

4467

4468

4.469

4470

E
o 4471
£
=
=]
=
1472
1473
4474
4475
1000 m
270000 271000 272000 273000 274000 275000 276000 277000 278000

Easting (m)

We can also explore the cropped image using rasterio and matplotlib , by plotting the
distribution of the pixel values for each band.

This becomes useful when we have to indagate pixel diversity to find some clustering or some
outlier values.

@ ITIN=ERIS

[1: import rasterio
from rasterio.plot import show_hist
import matplotlib.pyplot as plt
import numpy as np

with rasterio.open('files/Lecce_RGB_cropped.tif') as src:
plt.figure(figsize=(12, 8))
Empty brackets for reading all bands
data = src.read()

for a better representation all nodata 'O' values needs to be masked-out
data_masked = np.ma.masked_equal(data, 0)

Show plot

band_labels = ['Red Band', 'Green Band', 'Blue Band']

show_hist(data_masked, bins=50, 1lw=0.5, label=band_labels,
title="\
Pixel Distribution Histogram:\n\
Lecce_RGB_cropped")

plt.show()
Pixel Distribution Histogram:
Lecce_RGB_cropped
120000 1 mm Red Band
mm Green Band
N Glue Band
100000 -
80000
-
=
2 60000 |
]
40000 +
20000 4
ol Ml
o 50 100 150 200 250

DN

Raster Manipulation and Filtering

Spatial filtering is crucial for enhancing feature detection, noise suppression, edge detection and
many others more noise in raster imges.

Rasterio allows you to extract individual bands from multi-band images, process these bands
with tools and libraries such as scipy , and save the modified outputs back to a new raster file.

In this example we will extract bands to apply a Sobel Filter to our cropper study area.
@ITIN=ERIS

For instance, we can try applying a Sobel filter, to highlight coastline then visually compare it
with the original cropped RGB image and save the processed result.

Specifically, the Sobel operator is an algorithm used to process digital images, particularly to
perform contour recognition.

Technically speaking, it is a differential operator, which calculates an approximate value of the
gradient of a function representing the brightness of the image.

[1: 'pip install scikit-image

Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: scikit-image in /home/user/.local/lib/python3.10/site-
packages (0.25.2)

Requirement already satisfied: lazy-loader>=0.4 in
/home/user/.local/1lib/python3.10/site-packages (from scikit-image) (0.4)

Requirement already satisfied: networkx>=3.0 in /home/user/.local/lib/python3.10/site-
packages (from scikit-image) (3.4.2)

Requirement already satisfied: imageio!=2.35.0,>=2.33 in
/home/user/.local/1lib/python3.10/site-packages (from scikit-image) (2.37.0)
Requirement already satisfied: scipy>=1.11.4 in /home/user/.local/lib/python3.10/site-
packages (from scikit-image) (1.15.0)

Requirement already satisfied: pillow>=10.1 in /home/user/.local/lib/python3.10/site-
packages (from scikit-image) (11.1.0)

Requirement already satisfied: packaging>=21 in /home/user/.local/lib/python3.10/site-
packages (from scikit-image) (24.2)

Requirement already satisfied: tifffile>=2022.8.12 in
/home/user/.local/1lib/python3.10/site-packages (from scikit-image) (2025.3.13)
Requirement already satisfied: numpy>=1.24 in /home/user/.local/lib/python3.10/site-
packages (from scikit-image) (1.26.4)

@ITIN=RIS

[1

import numpy as np

import rasterio

from skimage import filters
import matplotlib.pyplot as plt

rgb_path = 'files/Lecce_RGB_cropped.tif'

with rasterio.open(rgb_path) as src:
img_data = src.read([1, 2, 3]) # Read all R, G, B
Read all values but masks out all 'O' NoData values to avoid misfiltering
nodata_value = src.nodata if src.nodata is not None else 0
valid_mask = img_data != nodata_value
Create a copy of original values to apply Sobel only on valid pixels
sobel_filtered = np.zeros_like(img_data)

Loop on all RGB bands and apply Sobel filtering on valid pixels only
for i in range(3):
sobel _filtered[i] = filters.sobel(img_data[i].astype(np.float32))

Converts the pixel value to uint8 in order to save as a properly viewable image
and Restores the original NoData values to the corresponding pixels
sobel_filtered = sobel_filtered.astype(np.uint8)

sobel_filtered[~valid_mask] = nodata_value

Saving the filtered image

sobel_path = rgb_path.replace('.tif', '_sobel.tif')

width = src.width # image width

height = src.height # image height

with rasterio.open(sobel_path, 'w', driver='GTiff', count=3, dtype='uint8',
crs=src.crs, transform=src.transform, nodata=nodata_value,
width=width, height=height) as dest:

dest.write(sobel_filtered)

Display of the original compared with the filtered one
fig, axes = plt.subplots(1, 2, figsize=(18, 16))

Original image
with rasterio.open(rgb_path) as src:
original_img = src.read([1, 2, 3]).transpose(1, 2, 0)
axes[0].imshow(original_img)
axes[0].set_title('Original RGB'")
axes[0].axis('off")

Filtered image
with rasterio.open(sobel_path) as src:

sobel_img = src.read([1, 2, 3]).transpose(1, 2, 0)
axes[1].imshow(sobel_img)
axes[1l].set_title('RGB Sobel filtered')
axes[1l].axis('off")

plt.tight_layout()
plt.show()

@ ITIN=RIS

Original RGB RGB Sobel filtered

There other useful filtering and methods for processing an image.

For example, again using scipy we find the Otsu method, a binary thresholding algorithm.
The Otsu method is an automatic histogram thresholding method in digital images. The
algorithm assumes that there are only two classes in the image to be thresholded, and then
calculates the optimal threshold for separating these two classes by minimizing the intra-class
variance.

Let’s see how to apply it, and compare it to the original.

®ITIN=ERIS

[1

import rasterio

import numpy as np

import matplotlib.pyplot as plt
from skimage import filters

with rasterio.open(rgb_path) as src:
rgh_image = src.read() # Array shape: (3, height, width)
meta = src.meta.copy()

Mask out all NoData values (values = 0)
valid_mask = np.all(rgb_image != 0, axis=0)

Convert the RGB image to grayscale (mean of valid pixels)
gray_image = np.mean(rgb_image, axis=0)

Apply the mask to exclude NoData values
valid_gray_image = gray_image[valid_mask]

Compute Otsu's threshold excluding NoData
otsu_threshold = filters.threshold_otsu(valid_gray_image)

Apply the threshold to create a binary mask
binary_mask = (gray_image > otsu_threshold).astype(np.uint8) * 255

Preserve NoData regions (set them to 0 in the output mask)
binary_mask[~valid_mask] = 0

Update metadata for the binary image
meta.update({

'dtype': 'uint8',

'count': 1

1)

Save the binary mask with Otsu's threshold

otsu_output_path = 'files/Lecce_RGB_cropped_otsu.tif"'

with rasterio.open(otsu_output_path, 'w', **meta) as dst:
dst.write(binary_mask, 1)

Display of the original compared with the binary one
plt.figure(figsize=(18, 16))

Original image

plt.subplot(1, 2, 1)

plt.title("Original RGB")
plt.imshow(np.moveaxis(rgb_image, 0, -1))
plt.axis("off")

Thresholded image

plt.subplot(1, 2, 2)

plt.title("RGB Otsu Thresholded")
plt.imshow(binary_mask, cmap='gray')
plt.axis("off")

plt.show()

@ ITIN=RIS

Ornginal RGB RGB Otsu Thresholded

Composite Raster Processing

In addition to viewing, editing, and filtering rasters, rasterio allows you to create composites by
processing.

Now we will see a complete workflow for creating a composite raster using Rrasterio , with a
focus on calculating the Normalized Difference Vegetation Index (NDVI).

NDVI is one of the many widely used indexes in remote sensing that helps quantify some
physical properties, in this case it express the vegetation health by comparing the near-infrared
(NIR) and red spectral bands.

We will open the two .jp2 Red (04) and NIR (08) spectral band files and compute the NDVI for
the entire raster area.
The NDVI is calculated with the formula:

NIR — Red

NDVI=m 1 Red

®ITIN=ERIS

[1

import numpy as np
import rasterio
import matplotlib.pyplot as plt

Define the Sentinel-2 data root folder and file paths for the red and NIR bands.
S2root =

'files/S2B_MSIL2A_20250309T094039_N0511_R036_T34TBK_20250309T120119.SAFE/GRANULE/L2A_T3<

Band_04_file = f"{S2root}T34TBK_20250309T094039_B04_10m.jp2"
Band_08_file = f"{S2root}T34TBK_20250309T094039_B08_10m.jp2"

Open the red band file (Band 04) and read its data.

with rasterio.open(Band_04_file) as red_src:
red = red_src.read(1).astype('float32")
Save metadata for later use (for saving the final NDVI image).
meta = red_src.meta.copy()

Open the NIR band file (Band 08) and read its data.
with rasterio.open(Band_08_file) as nir_src:
nir = nir_src.read(1).astype('float32"')

Calculate NDVI using the formula: (NIR - Red) / (NIR + Red)
np.errstate is used to ignore division warnings (e.g., division by zero).
with np.errstate(divide="ignore', invalid='ignore'):

ndvi = (nir - red) / (nir + red)

ndvi = np.nan_to_num(ndvi, nan=0.0) # Replace NaN values with 0.0

Print basic information about the NDVI array.
print(f"\nNDVI calculation complete\nshape: {ndvi.shape}\nresolution: 10m/px\n")

Update the metadata for the NDVI file.
meta.update({
"driver": "GTiff", # GeoTIFF format.
"dtype": 'float32', # Data type.
"count": 1 # Single band.

1)

Write the NDVI array to a new GeoTIFF file.

ndvi_file = "files/Lecce_NDVI.tif"

with rasterio.open(ndvi_file, 'w', **meta) as dst:
dst.write(ndvi, 1)

lgdalwarp -tr 100 100 -r bilinear files/Lecce_NDVI.tif files/Lecce_NDVI_resized.tif
ndvi_file_resized= "files/Lecce_NDVI_resized.tif" # green 100m (for low memory
plotting)

Now, open the newly created NDVI GeoTIFF file and visualize it.
with rasterio.open(ndvi_file_resized) as src:

bandl = src.read(1)

plt.figure(figsize=(15, 13))

plt.title("Locality: Lecce (IT) | Date: 2025-03-09 | Platform: Sentinel-2 |
Product: NDVI")

plt.imshow(bandl, cmap='Greens')

plt.colorbar(label="NDVI Values')

plt.axis('off")

@ ITIN=RIS

plt.show()

NDVI calculation complete
shape: (10980, 10980)
resolution: 10m/px

ERROR 1: Output dataset files/Lecce_NDVI_resized.tif exists,
but some command line options were provided indicating a new dataset
should be created. Please delete existing dataset and run again.

Locality: Lecce (IT) | Date: 2025-03-09 | Platform: Sentinel-2 | Product: NDVI

06

04

NDWV| Walues

0z

F 00

Another common and important practice in geospatial analysis is the image scaling process,
which consists on adjusting the spatial resolution of raster data.
We can do it with RrRasterio running cpaL in the backbone.
This involves upscaling (increasing image size) or downscaling (reducing image size).
Resizing is indeed is a crucial step in many workflows involving raster data, such as satellite
imagery, digital elevation models (DEMs) and other geospatial datasets.
Especially working in cloud, for example in-flight downsizing allows us to download very light-
weighted low-resolution previews to essay whether the whole processing is correct.
@ ITIN=RIS

[1: import rasterio
from rasterio.enums import Resampling
import matplotlib.pyplot as plt

Files paths
input_path = "files/Lecce_NDVI.tif"
output_tif = "files/Lecce NDVI_resized.tif"

View the comparison between the original raster and the resized raster
with rasterio.open(input_path) as original, rasterio.open(output_tif) as resized:
fig, axes = plt.subplots(1, 2, figsize=(20, 18))

axes[0].imshow(original.read(1), cmap='viridis')
axes[0].set_title("Original 10m resolution NDVI")
axes[0].axis('off")

axes[1l].imshow(resized.read(1), cmap='viridis'")
axes[1l].set_title(f"Resized 100m resolution NDVI")

axes[1l].axis('off")

plt.show()

0m resolution NDVI

m resolution NDVI

3 - Geopandas for Vector Processing and Visualization

Introduction to Vector Files and Their Types

Vector files are a common type of spatial data format used to represent geographic features
such as points, lines, and polygons.

They are different from raster files, which store data in a grid-like format. Vector data is essential
for representing discrete objects in a map and is widely used for tasks like geospatial analysis
and visualization.

The main types of vector files include:

@ ITIN=RIS

« Point: Represents a specific location, e.g., a city or a landmark.
« Line: Represents linear features, e.g., roads or rivers.
« Polygon: Represents area-based features, e.g., countries, lakes, or forest boundaries.

Geopandas is a powerful Python library for working with vector data, allowing you to import,
process, and visualize vector files.

GeoPandas

Importing Vector Files with Geopandas

To begin working with vector files, we need to import them into a ceopandas DataFrame.
Geopandas supports various file formats like Shapefiles, GeoJSON, and others.

After reading the shapefile usually its a good practice to examine it by viewing the first few rows

of its attribute table.

[1]: import geopandas as gpd

Load a shapefile into a GeoDataFrame
shp = gpd.read_file('files/confini_comunali_Puglia/ConfiniComunali.shp')

Display the first few rows

shp.head()
[1]: PERIMETER COD_ISTAT NOME_COM ISTAT COD_REG COD_PRO COD_COM SHAPE_AREA
0 23908.747701 16073016 MONTEIASI 73016.0 16 73 16 8.789343e+06
1 87974.479155 16073007 GINOSA 73007.0 16 73 7 1.873289e+08
2 42299.972315 16073021 PALAGIANO 73021.0 16 73 21 6.920569e+07
3 77341.902455 16073008 GROTTAGLIE 73008.0 16 73 8 1.014344e+08

@ITIN=RIS

Often

PERIMETER COD_ISTAT NOME_COM ISTAT COD_REG COD_PRO COD_COM SHAPE_AREA
FRANCAVILLA
4 83436.627048 16074008 FONTANA 74008.0 16 74 8 1.751759e+08

when working with shapefiles that we are not familiar with, it is important to delve into

their details (Number of records, data type by column, CRS, coordinates extension etc.).

[3]:

Shows structure, attributes and basic informations
shp.info()

minx, miny, maxx, maxy = shp.total_bounds
print(f"CRS: {shp.crs}\n\

Coordinate extension: \n\

Min X: {minx}\n\

Min Y: {miny}\n\

Max X: {maxx}\n\

Max Y: {maxy}\n\

") # Show [minX, minY, maxX, maxY]

<class 'geopandas.geodataframe.GeoDataFrame'>
RangeIndex: 258 entries, 0 to 257 >
Data columns (total 10 columns):

Column Non-Null Count Dtype
0 PERIMETER 258 non-null float64
1 COD_ISTAT 258 non-null int64
2 NOME_COM 258 non-null object
3 ISTAT 258 non-null float64
4 COD_REG 258 non-null int32
5 COD_PRO 258 non-null int32
6 COD_COM 258 non-null int32
7 SHAPE_AREA 258 non-null float64
8 SHAPE_LEN 258 non-null float64
9 geometry 258 non-null geometry

dtypes: float64(4), geometry(1l), int32(3), int64(1), object(1)

memory usage: 17.3+ KB
CRS: EPSG:32633
Coordinate extension:

Min X: 494422.7544
Min Y: 4409764.912900001
Max X: 800070.7000000002
Max Y: 4675194.8825

Then, we can switch to an actual visualization of the shapefile using ceopandas and matplotlib

again.

@ITIN=RIS

[1: import geopandas as gpd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter

Plot the shapefile
fig, ax = plt.subplots(figsize=(20, 18)) # Set figure size
shp.plot(ax=ax, edgecolor='black', facecolor="'1lightblue')

Add a title and axis labels

ax.set_title(f"Confini Comunali Puglia | CRS: {shp.crs}", fontsize=14)
ax.set_xlabel('Easting (m)"')

ax.set_ylabel('Northing (m)")

Display the plot
plt.show()

1e6 Confini Comunali Puglia | CRS: epsg:32633

4.65

F
in

Northing (m)

450

440

500000 550000 00000 50000 700000 750000 00000
Easting (m)

Shapefiles alteration and modification is a common operation, it can be performed in various

ways using Geopandas , depending on the specific task we need.

In this case, we will focus on adapting a shapefile to match the geographical extent of an NDVI
raster calculated previously.

The objective is to create a new shapefile containing only those polygons whose coordinates
intersect with the raster’s spatial extent, even if just a single point of intersection emst@ ITINERIS

For this operation, we opt to save the resulting shapefile as GeoPackage (.gpkg) format rather
than the traditional shapefile format.

Lately GeoPackage are being used more and more than classic shapefile formats (.shp, .shx, .prj,
.dbf) for several advantages: - GeoPackage supports more efficient storage and data
management, particularly for large datasets, as it allows for the storage of multiple vector and
raster datasets within a single file. - It is better suited for handling complex data types and offers
improved performance when dealing with large-scale geospatial data. This makes it a more
robust and scalable format compared to shapefiles, especially when working with large and
spatially complex datasets.

@ITIN=RIS

[1

import geopandas as gpd
import rasterio
from shapely.geometry import box

Bash snippet to create the folder that will contain the new shapefiles, if it does
not already exist
Imkdir -p files/confini_comunali_Salento

File paths
tif_path = 'files/Lecce_NDVI.tif'
output_shapefile_path = 'files/confini_comunali_Salento/intersected_polygons.gpkg'

Extract the geographical limits of TIFF file
with rasterio.open(tif_path) as src:

tif_bounds = src.bounds # (minx, miny, maxx, maxy)
tif_crs = src.crs # TIFF reference system
shp_crs = shp.crs # shapefile reference system

before proceding test if they have matching CRS
if tif_crs == shp_crs:
print(f"Matching CRS:\n{shp_crs}\n")
print("Proceding to polygon selection.")

Create a geometry (box) with the limits of TIFF file
tif_box = box(*tif_bounds)

Select just polygons that intersect the TIFF box
shp_filtered = shp[shp.intersects(tif_box)]
print(f"Intersected polygons: {len(shp_filtered)}")

Save the new shapefile with the intersecting polygons as a .gpkg
shp_filtered.to_file(output_shapefile_path, driver='GPKG')
print(f"New shapefile saved as .gpkg in: {output_shapefile_path}")

else:
print(f"Different CRS:\nshapefile CRS:\n{shp_crs}\n tif CRS:\n \n{tif_crs}\n")
Make shape CRS match with the TIFF one before proceding
shp = shp.to_crs(tif_crs)
print("Proceding to polygon selection.")

Create a geometry (box) with the limits of TIFF file
tif_box = box(*tif_bounds)

Select just polygons that intersect the TIFF box
shp_filtered = shp[shp.intersects(tif_box)]
print(f"Intersected polygons: {len(shp_filtered)}")

Save the new shapefile with the intersecting polygons as a .gpkg
shp_filtered.to_file(output_shapefile_path, driver='GPKG')
print(f"New shapefile saved as .gpkg in: {output_shapefile_path}")

@ ITIN=RIS

Different CRS:
shapefile CRS:
epsg:32633

tif CRS:

EPSG:32634

Proceding to polygon selection.

Intersected polygons: 124

New shapefile saved as .gpkg in:
files/confini_comunali_Salento/intersected_polygons.gpkg

Now, using Geopandas and matplotlib again, we can visualize the result of this operation, with

a joint plot of both the original shapefile and the intersected shapefile based on the bounding
box relative to the reference raster extent (NDVI).

@ITIN=RIS

[1

import matplotlib.pyplot as plt
import geopandas as gpd

import rasterio

from shapely.geometry import box
import matplotlib.patches as mpatches
from matplotlib.lines import Line2D

'shp' - original shapefile (GeoDataFrame)
'shp_filtered' - intersected shapefile (GeoDataFrame)
'tif _box' - bounding box of the raster (shapely.geometry box)

Create a figure and axes for plotting
fig, ax = plt.subplots(figsize=(20, 18))

Plot the original shapefile (shp) in blue
shp.plot(ax=ax,

color="blue',

edgecolor="white',

alpha=0.5,

linewidth=0.5)

Plot the intersected shapefile (shp_filtered) in red
shp_filtered.plot(ax=ax,

color='red',

edgecolor="white"',

alpha=1,

linewidth=0.5)

Plot the bounding box of the raster
tif _box 1is a shapely.geometry box, so we can plot it directly
x_min, y_min, x_max, y_max = tif_box.bounds
ax.plot([x_min, x_max, Xx_max, X_min, x_min],
[y_min, y_min, y_max, y_max, y_min],
color="black',
linestyle="--")

Set labels and title

ax.set_title(f"Confini Comunali Puglia | CRS: {tif_crs}\nNDVI Raster Intersection",
fontsize=16)

ax.set_xlabel('Easting (m)"')

ax.set_ylabel('Northing (m)")

Create custom legend
legend for the original shapefile
original_shapefile_patch = mpatches.Patch(color="'blue',
label='0Original Shapefile')
legend for the intersected shapefile
intersected_shapefile_patch = mpatches.Patch(color="'red"',
label="Intersected Shapefile')
legend for the tiff bounding box
bounding_box_line = Line2D([0], [0],
color="black',
linestyle="--",
linewidth=2,
label="'Raster Bounding Box'")

ax.legend(handles=[original_shapefile_patch, intersected_shapefile_patch,
bounding_box_1line])

@ ITIN=RIS

Show the plot
plt.show()

Confini Comunali Puglia | CR5: EPSG:32634
166 NDVI Raster Intersection

4704 B Original Shapefile
I ntersected Shapefile
== Raster Bounding Box

4601

b
in
n

MNorthing (m)

4504

445 4

4404

[} 50000 100000 150000 200000 250000 300000
Easting (m)

We now exploit Geopandas and Rrasterio together for more advanced processing.

Specifically, we will perform a simple average of the NDVI raster values but calculated for each
polygon (for each municipality area in Salento) using shapely.geometry . Due to RAM issues
(often present in python working environments) to do this we will do two tricks: - use the lighter
NDVI_resized.tif already computed previously, whose 100m resolution instead of the native
20m will allow us to compute these areal averages more easily. - define a smaller pixel chunk
size for compute mean without any RAM chocking.

@ ITIN=RIS

[1

import r
import n
from ras
from sha
from ras

Open t
with ras
L1
mean

Ge
widt
heig

De
chun

Lo
for

NDVI 1is

its mean

data val

asterio

umpy as np

terio.mask import mask
pely.geometry import mapping
terio.windows import Window

he raster
terio.open('files/Lecce_NDVI_resized.tif') as src:
st to store mean NDVI values for each polygon
_values = []

t raster dimensions
h = src.width
ht = src.height

fine a smaller pixel chunk size (e.g., 10000x10000)
k_size = 10000

op over the Salento's polygons ('shp_filtered')
_, row in shp_filtered.iterrows():
geometry = [mapping(row['geometry'])]

Initialize a variable to hold the masked raster data for the current polygon
masked_image = []

Process the raster in chunks
for start_x in range(0, width, chunk_size):
for start_y in range(0, height, chunk_size):
Define the window to read
window = Window(start_x, start_y, chunk_size, chunk_size)

try:
Read the raster data for the current window (i.e., chunk)
data = src.read(1, window=window) # Read the first band (because
a single-band raster)

Mask the raster using the polygon geometry
out_image, out_transform = mask(src, geometry, crop=True)

Now we have the masked data for the polygon and can calculate

We need to be sure to mask out any no-data values
masked_data = out_image[0][~np.isnan(out_image[0])] # Mask no-
ues

Append the data to the list
masked_image.append(masked_data)

except Exception as e:
Exception print needed in case of debugging
print(f"Error while processing window {(start_x, start_y)}: {el}")

After processing all chunks, combine the chunks and calculate the mean

if masked_image: # Only calculate the mean if the list isn't empty
masked_image = np.concatenate(masked_image) # Combine the chunks
mean_value = masked_image.mean() # Calculate the mean of the pixel values

else:
mean_value = None # No valid pixels in the polygon

@ ITIN=RIS

mean_values.append(mean_value)

Fai una copia esplicita del DataFrame per evitare problemi di copia

shp_filtered_copy = shp_filtered.copy()

Add the mean values to the shapefile
shp_filtered_copy['mean_ndvi'] = mean_values

Save the updated shapefile

outfile = "files/confini_comunali_Salento/mean_NDVI_Salento.gpkg"
shp_filtered_copy.to_file(outfile, driver='GPKG')

print("NDVI average value computed.\n Results in:", outfile)

NDVI average value computed.
Results in: files/confini_comunali_Salento/mean_NDVI_Salento.gpkg

We can always use Geopandas and matplotlib to plot the result

[]

import geopandas as gpd
import matplotlib.pyplot as plt

Plot the shapefile with 'mean_ndvi' as the color parameter
fig, ax = plt.subplots(figsize=(20, 18))

Plot using a green color map, scaling colors based on the 'mean_ndvi' column

shp_filtered_copy.plot(column="'mean_ndvi', ax=ax, legend=True,
cmap='Greens', # Using a green color map
legend_kwds={'label': "Mean NDVI by Polygon",
'orientation': "horizontal"})

Add title and labels

ax.set_title('Mean NDVI by Polygon', fontsize=16)
ax.set_xlabel('Easting (m)"')
ax.set_ylabel('Northing (m)")

Show the plot
plt.show()

@ ITIN=RIS

1e6 Mean NDVI by Polygon

450

448

Northing {m)

&
=
o

444

442

T T T T T T
130000 200000 220000 240000 260000 230000
Easting {m)

T T
0.05 010 015 020 025
Mean NDVI by Polygon

Now, using Geopandas and pandas we can transform a list of EPSG:32634 coordinates (they
can be a possible in situ sampling points) into a GeoPackage points shapefile, to be used for
further geospatial processing.

@ ITIN=RIS

[1

[]

import geopandas as gpd
from shapely.geometry import Point
import pandas

Coordinates
coordinates =
(273428.62, 4471528.
(273333.06, 4471504.
(273155.69, 4471459.
(272889.96, 4471402.
(272627.77, 4471357.
(272334.69, 4471315.
(271986.81, 4471271.
(271693.17, 4471242.
(271364.28, 4471193.
(270979.83, 4471147.
(270558.81, 4471098.

as pd

in EPSG:32634

[

Create a GeoDataFrame
gdf = gpd.GeoDataFrame(
pd.DataFrame(coordinates, columns=["longitude",
geometry=[Point(lon,

crs="EPSG:

Save to GeoPackage

gdf.to_file("files/extraction_points.gpkg",

print("Extraction Points has been saved successfully as .gpkg.")

Extraction Points has been saved successfully as .gpkg.

pnt
pnt

55),
63),
57),
66),
00),
93),
98),
75),
71),
29),
37),

= gpd.read_file("files/extraction_points.gpkg")

longitude

latitude

geometry

"latitude"]),
lat) for 1lon, lat in coordinates],
32634" # Coordinate reference system

driver="GPKG")

NV 00 N o0 it WWN

=
(=]

273428.62
273333.06
273155.69
272889.96
272627.77
272334.69
271986.81
271693.17
271364.28
270979.83

270558.81

4471528.55
4471504.63
4471459.57
4471402.66
4471357.00
4471315.93
4471271.98
4471242.75
4471193.71
4471147.29

4471098.37

POINT (273428.620 4471528.550)
POINT (273333.060 4471504.630)
POINT (273155.690 4471459.570)
POINT (272889.960 4471402.660)
POINT (272627.770 4471357.000)
POINT (272334.690 4471315.930)
POINT (271986.810 4471271.980)
POINT (271693.170 4471242.750)
POINT (271364.280 4471193.710)
POINT (270979.830 4471147.290)
POINT (270558.810 4471098.370)

@ITIN=RIS

Now, with Geopandas and Rasterio together we can use the point shapefile to extract
information from the 20m resolution NDVI raster and the average NDVI per municipality
contained in the extraction_points.gpkg shapefile.

@ITIN=RIS

[1: import geopandas as gpd
import rasterio
from shapely.geometry import Point

Load the extraction points GeoPackage
pnt = gpd.read_file("files/extraction_points.gpkg")

Load the 20m resolution NDVI raster
ndvi_raster_path = "files/Lecce_NDVI.tif"
with rasterio.open(ndvi_raster_path) as src:
Ensure the points' CRS matches the raster's CRS
pnt = pnt.to_crs(src.crs)

Function to extract raster value at point

def extract_ndvi_value(row):
Extract raster value at point location
point = [row.geometry.x, row.geometry.y]
row_idx, col_idx = src.index(point[0], point[1])
return src.read(1)[row_idx, col_idx]

Apply extraction function to points
pnt['ndvi_value'] = pnt.apply(extract_ndvi_value, axis=1)

Load the mean NDVI vector file
gdf_mean_ndvi = gpd.read_file("files/confini_comunali_Salento/mean_NDVI_Salento.gpkg")

Ensure that both GeoDataFrames have the same CRS
gdf_mean_ndvi = gdf_mean_ndvi.to_crs(pnt.crs)

Function to extract mean NDVI value from the mean NDVI shapefile
def extract_mean_ndvi(row):

This function will get the value from the 'mean_ndvi' attribute

In this case, being all polygons we will use spatial join

Starting find the polygon that contains the point and extract the mean_ndvi
value

containing_polygon = gdf_mean_ndvi[gdf_mean_ndvi.geometry.contains(row.geometry)]

if not containing_polygon.empty:
return containing_polygon.iloc[@]['mean_ndvi']
else:

return None # In case no polygon is found, return None

Apply the extraction function to points
pnt['mean_ndvi_value'] = pnt.apply(extract_mean_ndvi, axis=1)

Check for duplicate column names and remove any 1f necessary
pnt = pnt.loc[:, ~pnt.columns.duplicated()]

Save the updated GeoDataFrame to as a new GeoPackage
pnt.to_file("files/extraction_points_NDVI.gpkg", driver="GPKG")

print("GeoPackage with NDVI values has been saved successfully.")
GeoPackage with NDVI values has been saved successfully.

Let’s check the results
@ ITIN=RIS

[1

NDVI_pnt = gpd.read_file("files/extraction_points_NDVI.gpkg")

NDVI_pnt

longitude latitude ndvi_value mean_ndvi_value geometry

0 273428.62 447152855 0.329571 0.158953 POINT (273428.620 4471528.550)
1 273333.06 4471504.63 -0.051338 0.158953 POINT (273333.060 4471504.630)
2 273155.69 4471459.57 0.361765 0.158953 POINT (273155.690 4471459.570)
3 272889.96 4471402.66 0.457857 0.158953 POINT (272889.960 4471402.660)
4 272627.77 4471357.00 0.410326 0.158953 POINT (272627.770 4471357.000)
5 272334.69 447131593 0.318457 0.158953 POINT (272334.690 4471315.930)
6 271986.81 4471271.98 0.392727 0.158953 POINT (271986.810 4471271.980)
7 271693.17 447124275 0.412121 0.158953 POINT (271693.170 4471242.750)
8 271364.28 4471193.71 0.330433 0.158953 POINT (271364.280 4471193.710)
9 270979.83 4471147.29 0.340979 0.158953 POINT (270979.830 4471147.290)
10 270558.81 4471098.37 0.071696 0.195418 POINT (270558.810 4471098.370)

Everything seems correct.

Then we move to a fancy visualization of collected data.

To better express points data we will plot jointly: - a matplotlib histogram which will show the

trend of NDVI values and the average for each point; - a geospatial plot using ceopandas and

Rasterio of an NDVI raster excerpt at 20m resolution, from which the values were extracted,

with focus detail on the extraction points area.

@ ITIN=SRIS

[1

import geopandas as gpd

import rasterio

import matplotlib.pyplot as plt
import numpy as np

from rasterio.plot import show
from matplotlib import colors

from shapely.geometry import Point

Load the data
NDVI_pnt = gpd.read_file("files/extraction_points_NDVI.gpkg")

Open the raster file
raster_path = 'files/Lecce_NDVI.tif'
raster_path_resized = 'files/Lecce_NDVI_resized.tif' # for memory issues

with rasterio.open(raster_path_resized) as src:
Extract raster bounds to determine the extent for zooming in
bounds = src.bounds

Zooming into the bounding box around the points' coordinates
min_x, min_y, max_x, max_y = NDVI_pnt.geometry.total_bounds

Create the figure with 2 subplots: one for histograms and one for the map
fig, axes = plt.subplots(1, 2, figsize=(18, 8))

Plot the histograms of 'ndvi_value' and 'mean_ndvi_value' for each point
axes[0].bar (NDVI_pnt.index,

NDVI_pnt['ndvi_value'],

alpha=0.7,

label="'NDVI Value',

color="blue',

width=0.4,

align='center")

that +0.4 is used to slightly shift the bars so they dont overlap
axes[0].bar (NDVI_pnt.index + 0.4,
NDVI_pnt['mean_ndvi_value'],
alpha=0.7,
label="'Mean NDVI Value',
color="red',
width=0.4,
align='center")
axes[0].set_xlabel('Point Index'")
axes[0].set_ylabel('NDVI Value')
axes[0].set_title('NDVI and Mean NDVI Values for Each Point'")
axes[0].legend()

Set x-axis ticks with a step of 1
axes[0].set_xticks(np.arange(len(NDVI_pnt)))

Plot the raster map with the points
show(src, ax=axes[1],

cmap="'viridis',

title="NDVI Map with Extraction Points")

Add the points to the map
axes[1l].scatter (NDVI_pnt.geometry.Xx,
NDVI_pnt.geometry.y,

co;gr:'red', @ITIN=ERIS
s=50,

edgecolor="black"',
label="Extraction Points')

Add the point IDs above each point
for idx, row in NDVI_pnt.iterrows():
axes[1l].text(row.geometry.x,

row.geometry.y + 50,

str(idx),
color="black',
fontsize=9,
ha="'center"')

Set zoom limits based on the extent of the points
axes[1l].set_xlim(min_x - 1000, max_x + 1000) # Adjust zoom window as necessary

axes[1l].set_ylim(min_y - 1000, max_y + 1000)

Add a legend for the raster map
axes[1].legend(loc="upper right")

Show the plot
plt.tight_layout()
plt.show()

NDVI and Mean NDVI Values for Each Point

il

5
Paint Index

m— NDVI Value
= Mean NDVI Value

0.

=

NDVI Map with Extraction Points

44725 " i
@ Extraction Points

44720
44715
44710
44705
271000 272000 273000

B 7 8 9 10

0

[

NDVI Value
o
2

0.

00

Now let’s try working with another type of vector shape.

Let’s try to create a polyline from the extraction_points used earlier, after which we create a
100m buffer around it.

To do this we use Geopandas and LineString .

@ ITIN=RIS

[1: import geopandas as gpd
from shapely.geometry import LineString

Creating a polyline from points
points = gpd.read_file("files/extraction_points.gpkg")
line = LineString(points.geometry.tolist())

Save polyline as GeoPackage
line_gdf = gpd.GeoDataFrame(geometry=[1line], crs=points.crs)
line_gdf.to_file("files/section_line.gpkg", driver="GPKG")

Create a 100m buffer around the polyline to make it a precise polygonal area
buffer = line.buffer(100)
buffer_gdf = gpd.GeoDataFrame(geometry=[buffer], crs=points.crs)

Let’s start by using the polyline.

With the polyline, it is possible to do a multiple capillary extraction from the NDVI raster, in

order to plot a index profile along the path.

This is no different from the extraction we did previously for points only, but now using both
Linestring and Point from shapely.geometry together with geopandas .

We will also plot the extraction points as a reference during the profile.

@ ITIN=RIS

[1

import numpy as np

import rasterio

import geopandas as gpd

from shapely.geometry import LineString, Point
import matplotlib.pyplot as plt

File paths

ndvi_path = "files/Lecce_NDVI.tif"

polyline_path = "files/section_1line.gpkg"
points_path = 'files/extraction_points_NDVI.gpkg'

read NDVI raster

with rasterio.open(ndvi_path) as src:
ndvi_data = src.read(1) # Band 1
ndvi_transform = src.transform

read polyline and points geopackage
gdf_line = gpd.read_file(polyline_path)
gdf_points = gpd.read_file(points_path)

Estrai la polyline dal GeoDataFrame (ad esempio, la prima riga)
polyline = gdf_line.geometry.iloc[0Q]

function to extract NDVI values along the polyline
def extract_ndvi_along_line(polyline, src):
distances = np.linspace(®, polyline.length, int(polyline.length // 20))
points = [polyline.interpolate(d) for d in distances]
coords = [(p.x, p.y) for p in points]
ndvi_values = [v[0] for v in src.sample(coords)]
return distances, ndvi_values, points

extract NDVI values along the polyline
with rasterio.open(ndvi_path) as src:
distances, ndvi_values, line_points = extract_ndvi_along_line(polyline, src)

Find extraction points on the polyline
point_distances = [polyline.project(p) for p in gdf_points.geometry]

Plot NDVI profile
plt.figure(figsize=(12, 6))
plt.plot(distances, ndvi_values, color='green', label='NDVI polyline')

Add labels for extraction points
for idx, (dist, row) in enumerate(zip(point_distances, gdf_points.iterrows())):
value_idx = np.argmin(np.abs(distances - dist))
plt.scatter(dist, ndvi_values[value_idx], color='red', edgecolor='black"',
label="extraction point' if idx == 0 else "")
plt.text(dist, ndvi_values[value_idx] + 0.009, f'{idx}', color='black',
fontsize=10, ha='center"')

Graph details

plt.xlabel('Distance from Extraction Point © along the polyline (m)")
plt.ylabel('NDVI value')

plt.title('NDVI Profile along the polyline')

plt.legend()

plt.grid(True, linestyle='--', alpha=0.5)

plt.show()

@ITIN=RIS

NDVI Profile along the polyline

s 4 —— NDVI polyline
® extraction point

0.4

- =

03 4

0.2

&g

0.0 1

NOWI value

0 500 1000 1500 2000 2500 3000
Distance from Extraction Paint 0 along the polyline (m)

After creating the polyline and buffer area we can try plotting them using again matplot1ib and

geopandas .
In this case we will try a fancy plot displaying also the 20m resolution NDVI raster as basemap,

complete with legend and coordinate references on the axes.

@ ITIN=RIS

[1: import geopandas as gpd
import rasterio
import matplotlib.pyplot as plt
from rasterio.plot import show
from matplotlib.patches import Patch
from matplotlib.lines import Line2D

Visualize the polyline on the NDVI map
raster_path = 'files/Lecce_NDVI.tif'
raster_path_resized = 'files/Lecce_NDVI_resized.tif' # for memory issues

with rasterio.open(raster_path_resized) as src:
fig, ax = plt.subplots(figsize=(10, 10))
show(src, ax=ax, cmap='viridis')

Plot the polyline and its buffer
line_gdf.plot(ax=ax, edgecolor='red',6 Llinewidth=2)
buffer_gdf.plot(ax=ax, edgecolor='blue', alpha=0.3)

Create custom legend
Legend for the polyline
polyline_leg = Line2D([0], [0], color='red', linewidth=2, label='Polyline')

Legend for the buffer area
buffer_leg = Patch(facecolor="blue', alpha=0.3, label='Buffer (100m)"')

Compose legend items
ax.legend(handles=[buffer_leg, polyline_leg], loc='upper right')

Detail zoom on the polyline area

minx, miny, maxx, maxy = line_gdf.total_bounds
ax.set_xlim(minx - 200, maxx + 200)
ax.set_ylim(miny - 200, maxy + 500)
ax.set_xlabel('Easting (m)"')
ax.set_ylabel('Northing (m)")

ax.grid(True, which='both', color='black', linestyle='--', linewidth=0.5)

plt.show()

44720
S Buffer (100m)
—— Paolyline
44718

44716

44714

Morthing {m)

44712

44710

270500 271000 271500 272000 272500 273000 273500
Easting (m)

We can use this newly created buffer area to clip the NDVI raster. @ITIN=ERIS

[1: import rasterio
from rasterio.mask import mask

Cropping the NDVI raster using the buffer
with rasterio.open(ndvi_path) as src:
out_image, out_transform = mask(src, [buffer], crop=True)

Set NoData values to 255
out_image[out_image == src.nodata] = 255

Copy the profile of the original raster and update
out_meta = src.meta.copy()
out_meta.update({
"driver": "GTiff",
"height": out_image.shape[1],
"width": out_image.shape[2],
"transform": out_transform,
"nodata": 255 # Set NoData value to 255
1)

Save the raster crop

out_path = 'files/section_line_NDVI.tif'

with rasterio.open(out_path, "w", **out_meta) as dest:
dest.write(out_image)

print("Cropping saved in ", out_path)

Cropping saved in files/section_line_NDVI.tif

In the end we can plot the buffer area cropped 20m resolution NDVI along with the extraction
points used into the creation of the polyline, again using matplotlib and geopandas .

In this case we will keep transparency for crop process nodata pixels.

Also this plot will have legend and coordinate references on the axes.

@ ITIN=RIS

[1

import numpy as np

import rasterio

import geopandas as gpd

from matplotlib import pyplot as plt

Paths
raster_path = 'files/section_line_NDVI.tif'
points_path = 'files/extraction_points.gpkg'

Read the raster
with rasterio.open(raster_path) as src:
raw_data = src.read(1)
nodata are forcefully read as '0' instead of '255', so we filter the data='0'
data = np.ma.masked_equal(raw_data, 0)
Get the spatial extent for the plot
spatial_extent = [src.bounds.left, src.bounds.right, src.bounds.bottom,
src.bounds. top]

Plotting
fig, ax = plt.subplots(figsize=(18, 14))
chm_plot = ax.imshow(data, cmap='viridis', extent=spatial_extent)

Plot the vector points (extraction points)
gdf = gpd.read_file(points_path)
gdf.plot(ax=ax, color='red', edgecolor='black', marker='o', markersize=10)

Add the point IDs above each point
for idx, row in gdf.iterrows():
ax.text(row.geometry.x,

row.geometry.y + 50,
str(idx),
color="black',
fontsize=12,
ha='center"')

Add legend (colorbar) with custom legend_kwds
colorbar = fig.colorbar(chm_plot, ax=ax, orientation='horizontal')
colorbar.set_label("NDVI value")

Add gridlines

ax.set_xlabel('Easting (m)"')

ax.set_ylabel('Northing (m)")

ax.set_title("NDVI along the polyline buffer area with extraction points",
fontsize=16)

Detail zoom on the polyline area

ax.set_xlim(minx - 200, maxx + 200)

ax.set_ylim(miny - 200, maxy + 200)

plt.show()

@ ITIN=RIS

4

1e6 NDVI along the polyline buffer area with extraction points

44717
44716
44715

T 44714

2
£ 4am13
=

2
44712

44711

44710

44709 T T T T T T T
270500 271000 271500 272000 272500 273000 273500

Easting (m)

-02 =01 00 01 02 03 o4 05
NDVI value

- Exercises

Spatial Data Visualization and Analysis

Write code and document your process in Markdown cells.

Input

1.

Dataset Import

Choose a publicly available shapefile (.gpkg, .shp etc) and raster file (.tif, .jp2 etc) or
Use the provided raster and shapefiles used in this lesson.

Operations:

2.

Geospatial Data Handling with GeoPandas

Load the vector data file using GeoPandas.

Explore the dataset using gdf.info(), gdf.head(), and gdf.describe().

Extract relevant features (e.g., a specific polygon or point geometry) from the GeoDataFrame.
Create a buffer around a specific polygon feature and store it in a new column.

Perform spatial operations, such as overlaying vector data and extracting points inside the

polygon.
Plot the vector data on a map with GeoPandas.

. NDVI Profile Extraction with Rasterio

Read a raster using Rasterio.
@ ITIN=RIS

« Extract pixel values along a defined line (e.g., a transect) using spatial interpolation (similar to
previous examples).

« Handle missing or NoData values from the raster by setting them to a specific value (e.g.,
255) and applying masking techniques.

« Plot the pixel values profile along the transect using Matplotlib or Seaborn.

4. Data Visualization with Matplotlib and Seaborn

« Create visualizations to explore the relationship between pixel values and specific spatial
features (e.g., elevation, land use, or vegetation type).

« Customize the plot by adding labels, titles, gridlines, and a legend.

« Add a Seaborn heatmap or scatterplot to visualize the distribution of pixel values across
different areas of the study region.

Output

Save any type of output resulting from the processing and analysis of rasters and shapefiles in:
>exercise/result.csv

[1: ## Do you exercise here:

@ITIN=RIS

