PIANO NAZIONALE
DI RIPRESA E RESILIENZA

delle Ricerche

Finanziato Ministero _ : . _ .
dall'Unione europea dell’Universita i [taliadomani (] Consiglio Nazionale

NextGenerationEU e della Ricerca

Python data analysis

Saverio Mancino

Open the notebook lesson

Open the lesson using the CL

cd /media/sf_LVM_shared/my_SE_data/exercise
jupyter-1lab Python_data_analysis_SM.ipynb

Lesson Overview

This lesson is designed to provide a thorough understanding of data handling using Python. You
will learn how to work with numerical data using Numpy and handle tabular data using Pandas.
The lesson includes:

+ Detailed explanations of key concepts;
« Python code examples in executable cells;
« Exercise boxes with challenges to test your understanding.

Objectives
By the end of this lesson, you should be able to:

« Knowing the Jupyter enviroment for python programming;

« Understand the basics of Numpy for numerical operations

« Create and manipulate Numpy arrays

« Understand the fundamentals of Pandas, including Series and DataFrames

« Import, clean, and analyze data using Pandas

« Apply advanced data handling techniques such as grouping, merging, and pivoting
« Solve practical exercises to reinforce your learning

@ITIN=RIS

https://www.spatial-ecology.net/docs/build/html/index.html
https://www.spatial-ecology.net/docs/build/html/PYTHON/index.html

Table of Contents

1. Jupyter Environment for Python Programming

2. GitHub and Code Repository Versioning Systems
3. Introduction

4. Numpy Basics

5. Pandas Basics

6. Exercises

1 - Environments for Python Programming

Python Kernel

The Python kernel is the component that executes your Python code within a Jupyter Notebook.
When you run a cell, the kernel processes the code and returns the output. Also, the kernel
maintains the state of your session, including variable definitions, imported modules, and
function declarations. This means that cells can depend on code executed in previous cells.
Infact, Jupyter provides also the options to restart or interrupt the kernel. This is useful for
clearing the workspace or stopping long-running processes without having to close the entire
notebook.

Jupyter Notebook

Jupyter is an open-source, locally managed, web coding application for project development.

s
jupyter
N’

A Jupyter notebook has two components: a front-end web page and a back-end kernel. The
front-end web page allows data scientists to enter programming code or text into rectangular
‘cells’. The browser then passes the code to the back-end kernel, which executes it and returns
the results. Its characterised by:

« Interactive Computing:
@ ITIN=RIS

Jupyter Notebooks let you run code in an interactive, cell-by-cell manner. This enables
iterative development and immediate feedback, which is especially useful when testing new
ideas or debugging.

« Integrated Documentation:
Combine rich text (using Markdown), live code, and visualizations in a single document. This
integration supports reproducible research and thorough documentation of your data
analysis workflow.

« Multi-Language Support:
Although originally designed for Python and Bash, Jupyter supports many programming
languages (e.g., R, Julia) through the use of kernels. This flexibility allows you to work with
multiple languages in one environment.

« Ease of Sharing:
Notebooks can be easily shared and converted into different formats (HTML, PDF, slides),
making it simple to disseminate your work among colleagues or publish it online.

Google Colab

Google Colab is a cloud-based Jupyter Notebook environment developed by Google.

python

It allows users to write and execute Python code in an interactive notebook format without
requiring any local setup. Google Colab is particularly useful for Python beginners, researchers,
and data scientists who want a hassle-free environment for coding, data analysis, and machine
learning experiments.

« No Installation Required:
Colab runs entirely in the cloud, so there’s no need to install Python, Jupyter, or any

dependencies.
P @ ITIN=RIS

» Free GPU and TPU Access:
Google provides free access to GPUs and TPUs, making it a great choice for machine learning
and data science projects.

« Integration with Google Drive:
You can save and load files directly from Google Drive, making it easy to store and share your
work.

« Collaboration:
Multiple users can edit and run the same notebook simultaneously, similar to Google Docs.

 Pre-installed Libraries:
Colab comes already with popular Python libraries such as NumPy, Pandas, TensorFlow, and
Matplotlib pre-installed.

Using Google Colab:

« Access Colab: Open Google Colab in your browser.
« Create a New Notebook: Click on “New Notebook” to start coding in Python.
« Upload Files: Use files.upload() from google.colab to upload datasets.

2 - GitHub and Code Repository Versioning Systems

In modern software development and data science projects, version control systems are
essential for maintaining code integrity, tracking changes, and enabling collaboration. This
subchapter provides an overview of GitHub, along with other code repository and versioning
systems commonly used in the field.

What is Version Control?

Version control is a system that records changes to a file or set of files over time. This allows you
to: - Revert to Previous Versions: Easily roll back to earlier iterations if errors or issues arise. -
Collaborate Efficiently: Multiple developers can work on the same project simultaneously
without overwriting each other’s work. - Track Changes: Maintain a detailed history of
modifications, including who made the changes and why.

Git and Its Ecosystem

«+ Git: Git is a distributed version control system that lets every developer maintain a complete
local copy of the project history. Its branching and merging features facilitate
experimentation and efficient collaboration.

@ITIN=RIS

« Repositories: A repository (or repo) is the storage space for your project’s files along with
their version history. Repositories can be local (on your machine) or hosted remotely.

GitHub

« What is GitHub? GitHub is a web-based platform built around Git. It provides an intuitive
interface for hosting, managing, and collaborating on Git repositories.
« Key Features:
o Pull Requests: Enable developers to propose changes, review code collaboratively, and
merge updates into the main project after thorough discussion.
o Issue Tracking & Project Management: Built-in tools to manage bugs, track feature
requests, and plan project workflows.
o Continuous Integration (Cl): Integration with CI/CD tools automates testing and
deployment, ensuring that code changes meet quality standards before they are merged.
o Community & Open Source: GitHub hosts millions of open-source projects, making it a
vibrant community for sharing and contributing to software development.

There are many other popular platforms like GitLab, Bitbucket etc., wich offers similar
functionalities to GitHub with a different emphasis on other features.

3 - Introduction

In today’s world, data is at the heart of decision-making across industries: from scientific
research to finance, healthcare and social media. This lesson is designed to equip you with
essential skills in data handling using Python, focusing on two of its most powerful libraries:
Numpy and Pandas.

The Importance of Data Handling

With the exponential growth in the volume of data generated every day, having robust tools and
methodologies to handle, clean, and analyze data is more crucial than ever. Thats why an
effective data management and analysis can uncover insights that drive strategic decis;@]anERE

https://github.com/

Expecially in conducting scientific research the ability to interpret data accurately is invaluable.
Automated data handling tools use is spreading to minimizes human error and increases the
speed of data processing. By leveraging Python’s libraries, you can streamline tasks that would
otherwise be time-consuming if done manually. Its important to be comfortable with
manipulating data in Python but also prepared to tackle more complex data challenges, in this
sense mastering Numpy and Pandas lays the groundwork for more advanced topics in data
science, including machine learning, statistical analysis, and data visualization.

Bash vs Python: Memory Usage and Use Cases

Bash and Python are two powerful tools for data processing, but they have different strengths
and weaknesses.

Bash is efficient for: - Handling large text files (e.g., awk , sed , grep); - Processing streams
without loading data into memory; - Automating workflows and integrating different programs; -
Dealing with high-latency remote server/cluster.

However, Bash has limitations in: - Complex data structures (e.g., arrays, dictionaries); -
Advanced mathematical operations; - Readability and debugging;

When to Use Python

Python language is preferred for: - Complex data manipulations (e.g., NumPy, Pandas); - Machine
learning and data analysis; - Scripts requiring structured programming and logic;

However, Python differently from bash, loads all data into memory, which can be inefficient for
very large files compared to streaming in Bash.

Language Snippets

One of the most powerfull tecnique consinst in using small code snippets of Python in Bash or
vice versa. Switching code language with snippets it’s like switching gears while driving a car.

« Bash as the first gear: Ideal for quick tasks, file manipulation, and streaming large datasets
without loading them entirely.

« Python as the fifth gear: Powerfull, best for complex calculations, structured data
manipulations, and advanced analysis and modeling.

Mastering the switch between Bash and Python snippets can significantly optimize workflows
and memory usage.

@ITIN=RIS

What You Will Learn

« Fundamentals of Numpy: Learn how to create and manipulate multi-dimensional arrays,
perform vectorized operations, and understand how these methods offer significant
performance improvements over traditional Python loops.

« Pandas for Structured Data: Discover how to create and manage data using Pandas
DataFrames and Series. You'll learn methods for cleaning, transforming, and summarizing
data, enabling you to work efficiently with large datasets.

« Advanced Techniques: Delve into more sophisticated operations such as merging datasets,
grouping data for aggregate analysis, and creating pivot tables to reorganize and summarize
complex data structures.

« Hands-On Practice: This lesson incorporates practical exercises and code examples, giving
you the opportunity to apply theoretical knowledge to real-world data scenarios. Each
exercise is designed to reinforce your learning and build your confidence in using Python for
data handling.

Data Retrieving

Before proceeding with the lesson, run this code to download to the virtual machine the files
that will be used in these python lessons

[1: 'pip install gdown

[1: import gdown
I'mkdir -p /media/sf_LVM_shared/my_SE_data/exercise/files
file_url = 'https://drive.google.com/uc?export=download&id=1354Xpk-
gHNz7yuIYSqOgVvQy6_QpYhLVv'
output_path = '/media/sf_LVM_shared/my_SE_data/exercise/files/file.zip'
gdown.download(file_url, output_path, quiet=False)
lunzip /media/sf_LVM_shared/my_SE_data/exercise/files/file.zip -d
/media/sf_LVM_shared/my_SE_data/exercise/files
'rm /media/sf_LVM_shared/my_SE_data/exercise/files/file.zip

4 - Numpy Basics

PS¢

@

175 NumPy

@ ITIN=RIS

Numpy is a powerful Python library specifically designed for numerical computations and data
manipulations.

We will learn how to create and manipulate numpy arrays, which are useful matrix-like
structures for holding large amounts of data We will cover:

« Creating Numpy arrays;
« Basic arithmetic and vectorized operations;
« Indexing, slicing, and reshaping arrays;

In order to be able to use numpy we need to import the numpy library using import .

Imports in Python avoid us typing numpy every time for using some functions, providing an alias
us as instead.

It's commonly nicknamed numpy as np

[1]: # Importing necessary libraries
import numpy as np
import pandas as pd
from PIL import Image

If numpy import doesn’t work properly the following bash lines should be run

[5]: # !pip show numpy pandas | grep Version:
[6]: # !pip uninstall -y numpy

[7]1: # !pip install numpy==1.23.0
Now, we have access to all the functions available in numpy by typing np.name_of_function .

Arrays

An array is a data structure that stores multiple values in a single variable. Unlike individual
variables that hold a single piece of data, arrays allow you to work with collections of data
efficiently.

Arrays are commonly used in programming and data analysis because they provide a structured
way to store and manipulate large datasets.

Arrays are used to reducing memory overhead compared to using multiple separate variables,
providing optimized access and modification methods, which are significantly faster than
working with regular Python lists, especially for large datasets.

Futhermore, arrays support vectorized operations, meaning you can perform arithmetic
operations on entire arrays at once without using loops.

Arrays in Python @ITINERIS

In Python, arrays can be implemented in different ways:

« Lists: Python’s built-in lists can store different data types but are not optimized for numerical
computations.

« NumPy Arrays: NumPy provides specialized arrays that are more memory-efficient and allow
fast mathematical operations.

Numpy arrays

One of numpy'’s core concepts is the array. They can hold multi-dimensional data. To declare a
numpy array explicity we do np.array([]) .
For instance thats and example of a 1D array.

[8]: np.array([1,2,3,4,5,6,7,8,9])

[8]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

Most of the functions and operations defined in numpy can be applied to arrays.
For example, with the previous add operation:

[9]: arri1
arr2

np.array([1,2,3,4])
np.array([3,4,5,6])

np.add(arrl, arr2)

[9]: array([4, 6, 8, 10])

We can also add arrays using the following convenient notation:

[10]: arr1 + arr2

[10]: array([4, 6, 8, 10])

Arrays can be sliced and diced.

We can get subsets of the arrays using the indexing notation which is [start : end : stride
1.

Let's see what this means:

[11]: arr = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])

print(arr[5]) # show 5° position
print(arr[5:]) # start from 5° position
print(arr[:5]) # end on 5° position
print(arr[::2]) # Reading step set as 2

5
[5 6 7 8 910 11 12 13 14 15]
[0 123 4]

[0 2 4 6 810 12 14] @ITIN=ERIS

Numpy indexes start on 0, the same convention used in Python lists. But indexes can also be
negative, meaning that you start counting by the end.
For example, to select the last 2 elements in an array we can do:

[12]: arr = np.array([©,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])

arr[-2:] # show the first 2 elements from the last position

[12]: array([14, 15])

In this way we can freely access and easly manipulate the information contained in the arrays.

For example:

[13]: # we can create a Numpy array
a = np.array([1, 2, 3, 4, 5])
print('Original array:', a)

We can manipulate it with some basic arithmetic operations
adding elements

b=a+1

print('After adding one:', b)

or subtracting elements
slice_a = a[1:4]
print('Slice (indexes 1 to 3):', slice_a)

Original array: [1 2 3 4 5]

After adding one: [2 3 4 5 6]
Slice (indexes 1 to 3): [2 3 4]

Numpy arrays can have multiple dimensions.
Dimensions are indicated using nested square brackets [7.
The convention in numpy is that the outer [1 represent the first dimension and the innermost

[1 contains the last dimension.

@ ITIN=RIS

3D array

3
2D array °
1D array .
5 5203045
7 “ 2 01 9 “ 10 910103
axis 0 > axis 1 >
shape: (4,) shape: (2, 3)

Now we declare a 2D array with shape (1, 9). In this case, the nested (double) square brackets
[[11 indicates the array is 2-dimensional.

[14]: np.array([[1,2,3,4,5,6,7,8,9]])

[14]: array([[1, 2, 3, 4, 5, 6, 7, 8, 9]])

To visualise the shape (dimensions) of a numpy array we can add the suffix .shape to an array
expression or variable containing a numpy array.

[15]: arrl = np.array([1,2,3,4,5,6,7,8,9]) # 1D array
arr2 = np.array([[1,2,3,4,5,6,7,8,9]]) # 2D array
arr3 = np.array([[1],[2],[3]1,[4],[5]1,[61,[71,[81,[911) # 2D array
arr4d = np.array([1,2,3]) # 1D array
print(f"\

arrl shape: {arri.shape} \
arr2 shape: {arr2.shape} \
arr3 shape: {arr3.shape} \
arr4 shape: {arr4.shape} \
")

arrl shape: (9,) arr2 shape: (1, 9) arr3 shape: (9, 1) arr4 shape: (3,)

Numpy arrays can contain numerical values of different types.
These types can be divided in these groups:

Unsigned Integers

bits alias @ITIN=RIS

Unsigned Integers

8 bits uint8

16 bits uintlé
32 bits uint32
64 bits uinté64

Signed Integers

bits alias
8 bits int8
16 bits intl6
32 bits int32
64 bits int64
Floats

bits alias

32 bits float32

64 bits float64

We can look up the type of an array by using the .dtype suffix.

[12]:

arr = np.ones((10,10,10))

In this way we created a 10x10x10 matrix populated only by '1'
arr

print (f"shape: {arr.shape}")

print (f"type: {arr.dtype}")

print (f"weight: {round((arr.nbytes / 1024),2)} kB")
arr_bool = arr.astype(bool)

print (f"type: {arr_bool.dtype}")

print (f"weight: {round((arr_bool.nbytes / 1024),2)} kB")

shape: (10, 10, 10)
type: float64
weight: 7.81 kB
type: bool

weight: 0.98 kB

Numpy arrays normally store numeric values but they can also contain boolean values, bool .

Boolean is a data type that can have two possible values: True or False .

For example:

@ITIN=RIS

[9]: arr = np.array([True,

False, True]) # declaring a 1D bool array

print("bool array:", arr)

print("array shape: ",

arr.shape)

print("array type: ", arr.dtype)

bool array: [True False True]

array shape: (3,)
array type: bool

Numpy Operations

« Arithmetic Operations: Numpy supports element-wise operations, allowing you to add,

subtract, multiply, or divide arrays directly.

« Slicing and Indexing: Similar to Python lists, arrays can be sliced using the [start:stop]

syntax.

Let's explore further operations such as reshaping and broadcasting.

We can operate with boolean arrays using the numpy functions for performing logical

operations such as and and

or .

These operations are conveniently offered by numpy with the symbols * (and),and + (or).

Note: Here the “*** " and " "+ symbols are not performing multiplication and addition as with

numerical arrays. Numpy detects the type of the arrays involved in the operation and changes the

behaviour of these operators.

[18]: arri1
arr2

np.array([True,

np.array([True, True, False, False])

False, True, False])

two way to use AND operator

print ("AND operator")

print(np.logical_and(arrl, arr2))

print(arrl * arr2)

two way to use OR operator

print ("OR operator")

print(np.logical_or(arrl, arr2))

print(arrl + arr2)

AND operator

[True False False False]
[True False False False]

OR operator

[True True True False]
[True True True False]

Boolean arrays are often the result of comparing a numerical arrays with certain values.

This is sometimes useful to detect values that are equal, below or above a number in a numpy

array.

@ITIN=RIS

For example, if we want to know which values in an array are equal to 1, and the values that are
greater than 2 we can do:

[11]: arr = np.array([1, 3, 5, 1, 6, 3, 1, 5, 7, 1])

print(arr == 1)
print(arr > 2)

[True False False True False False True False False True]
[False True True False True True False True True False]

You can use a boolean array to mask out ralse values from a numeric array.
The returned array only contains the numeric values which are at the same index as True values
in the mask array.

[20]: arr = np.array([1,2,3,4,5,6,7,8,9])
mask = np.array([True,False, True,False, True,False, True,False, True])

arr[mask]

[20]: array([1, 3, 5, 7, 9])

Broadcasting

Broadcasting allows arithmetic operations between arrays of different shapes.

numPy automatically ‘stretches’ the smaller array across the larger one so that their shapes
become compatible for element-wise operations. This becomes widely useful in data pre-
processing and in pixel-wise filtering procedures.

[21]: # Example: Broadcasting
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print('matrix:")
print(matrix)
print(' ')
vector = np.array([10, 20, 30])
print('vector:")
print(vector)
print(' ")
Adding a vector to each row of the matrix using broadcasting
broadcast_sum = matrix + vector
print('Broadcasting addition:')
print(broadcast_sum)
print(' ')
Subtracting a vector to each row of the matrix using broadcasting
broadcast_sub = abs(matrix - vector)
print('Broadcasting subtraction:'")
print(broadcast_sub)
print(' ")

@ ITIN=RIS

matrix:
[[1 2 3]
[4 5 6]]

vector:
[10 20 30]

Broadcasting addition:
[[11 22 33]

[14 25 36]]
Broadcasting subtraction:

[[918 27]
[6 15 24]]

Scalar and Matrix Products

The Dot product is an inner scalar product of two vector/matrix elements of the same size, and
can be done with np.dot .

In this example we have two vectors or two ordered vector lists.

We can apply the dot product in such a way that we first multiply element-wise these two
ordered vectors.

91 T8
71:121=2-8+7-2+1-8=38
111 L8.

Dot product ‘

[22]: # Section 4: Scalar and Matrix Products
Dot product of two vectors
a = np.array([2, 7, 1])
b = np.array([8, 2, 8])

print(f"first vector:\n{a}\n\nsecond vector:\n{b}\n")

dot_product = np.dot(a, b)
print('Dot product:', dot_product)

@ITIN=ERIS

first vector:
[2 7 1]

second vector:
[8 2 8]

Dot product: 38

While, to perform a matrix multiplications we can use the @ operator as a shorthand for

np.matmul .

axa| 1 2 5 6

AxB= 1x5+2x7 1x6+2x8
3x5+4x7 3x6+4x8

15 22
43 50

Ax B=

[23]: # Matrix multiplication using the @ operator
matrix_a = np.array([[1, 2], [3, 4]11)
matrix_b = np.array([[5, 6], [7, 8]1)

print(f"first matrix:\n{matrix_a}\n\nsecond matrix:\n{matrix_b}\n")
matrix_product = matrix_a @ matrix_b

print(f"Matrix product:\n{matrix_product}")

first matrix:
[[1 2]
[3 4]]

second matrix:
[[5 6]
[7 8]]

Matrix product:
[[19 22]
[43 50]]

Data Cleaning and Processing with NumPy

Now we explore various techniques for data cleaning and processing using Numpy .
Let’s start by creating a sample data with some missing values (np.nan) and potential outliers.

@ITIN=RIS

[15]: # Create sample data
data = np.array([1.0, 1.5, 1.8, 1.9, 1.9, 121.5, 2.0, 2.1, 2.2, 2.2, 2.3, 2.5, 2.9,
3.1, 3.5, np.nan, 4.2, 100.0, 3.8, np.nan, 2.7])

print(f"Original Data:\n{data}")

Original Data:
[1. 1.5 1.8 1.9 1.9 121.5 2. 2.1 2.2 2.2 2.3 2.5
2.9 3.1 3.5 nan 4.2 100. 3.8 nan 2.7]

Usually most of sensed data might have several missing values and outliers.

To identify those problematic elements in our dataset we can use some Numpy tools.

For missing data identification we can use np.isnan , crucial for understanding the extent and
location of missing data before applying any cleaning techniques.

[16]: # Identifying missing values (Binary NaN mask)
missing_mask = np.isnan(data)
print(f"Missing Data Mask:{missing_mask}\n")

Counting missing values
num_missing = np.sum(missing_mask)
print(f"Number of missing values:{num_missing}")

Missing Data Mask:[False False False False False False False False False False False
False
False False False True False False False True False]

Number of missing values:2

After missing values identification, we can handle them by either replacing them with a specific

value or using more fancy techniques.

We can try two different approaches: - using np.nan_to_num to replace np.nan with O, - using
np.where along with np.nanmean to replace missing values with the mean of the non-missing

data.

[17]: # Replacing np.nan with "@" using np.nan_to_num
data_filled = np.nan_to_num(data, nan=0.0)
print(f"Data after replacing missing values with 0:\n{data_filled}\n")

Replace np.nan with the rounded mean of non-missing values using np.nanman
mean_value = round(np.nanmean(data),2)

data_mean_filled = np.where(np.isnan(data), mean_value, data)

print(f"The data mean value is:\n{mean_value}")

print(f"Data after replacing missing values with the mean:\n{data_mean_filled}")

Data after replacing missing values with 0:

[1. 1.5 1.8 1.9 1.9 121.5 2. 2.1 2.2 2.2 2.3 2.5
2.9 3.1 3.5 0. 4.2 100. 3.8 0. 2.7]

The data mean value is:

13.85

Data after replacing missing values with the mean:

[1. 1.5 1.8 1.9 1.9 121.5 2. 2.1 2.2 2.2
2.3 2.5 2.9 3.1 3.5 13.85 4.2 100. 3.8 13.85
2.7

] @ ITINSRIS

Data can often contain outliers that may skew the analysis.

In the previous example we can clearly see how the mean value was altered by outliers
presence.

So we have to deal with data filtering or replacing in order to cut out such outliers.
One method consist in using a boolean indexing.

For example, we define a threshold and remove data points that exceed this value.

[18]: # Definition of an outlier threshold (e.g., values >= 20 are considered outliers)
threshold = 20
filtered_data = data[data < threshold]

print(f"Data after filtering out outliers (values >= 20):\n{filtered_data}")

Data after filtering out outliers (values >= 20):
[t. 1.51.81.91.92. 2.12.22.22.32.52.93.13.54.23.82.7]

Another common data handling processing tasks consist in sorting and aggregation.
For this tasks we can use np.sort to order the data and np.unique to find distinct values; along

with the calculation of the basic aggregate statistics like the sum (np.sum) and mean (np.mean)

of the cleaned data.

[20]: # Sort the data after filling missing values
sorted_data = np.sort(filtered_data)
print(f"Sorted Data:\n{sorted_data}")

Identify unique values
unique_values = np.unique(filtered_data)
print(f"Unique Values:\n'{unique_values}")

Calculate aggregate statistics

data_sum = round(np.sum(filtered_data),2)
data_mean = round(np.mean(filtered_data),2)
data_std = round(np.std(filtered_data), 2)

print('\n\
Sum:', data_sum, '\n\
Mean:', data_mean, '\n\

Std:', data_std)

Sorted Data:

[1. 1.51.81.91.92. 2.12.22.22.32.52.72.93.13.53.84.2]
Unique Values:

'[1. 1.51.81.9 2. 2.12.22.32.52.72.93.13.53.84.2]

Sum: 41.6
Mean: 2.45
Std: 0.81

After a deep data exploring, we can eventually use some more advanced data processing

techniques.
One approach consist in using np.where for conditional data transformations with np.clip to

limit the values within a specified range, which is often useful for handling extreme values.
@ITIN=RIS

[29]: # conditional processing example: data gain by multiply values > than 3 by 100
condition = filtered_data > 3

data_processed = np.where(condition, filtered_data * 100, filtered_data)
print(f"Data after conditional processing (values < 3 multiplied by
100):\n{data_processed}")

Data ranging using np.clip to limit values to a range (e.g., 1 to 3)
data_clipped = np.clip(data_filled, 1, 3)
print(f"Data after clipping values to the range 0-3:\n'{data_clipped}")

Data after conditional processing (values < 3 multiplied by 10):

[1. 1.5 1.8 1.9 1.9 2. 2.1 2.2 2.2 2.3 2.5 2.9
310. 350. 420. 380. 2.7]

Data after clipping values to the range 0-3:

'[1. 1.51.81.91.93. 2. 2.12.22.22.32.52.93. 3. 1. 3. 3.
3. 1. 2.7]

These numpy tools, along with many others, are essential for manipulating and processing
numerical data, expecially when those are (often) very large.

However, all techniques and methodologies that can potentially be employed in data processing
must always be calibrated to the used data.

They need to fit the type of examinated data and the general purpose of these processings.

5 - Pandas Basics

!l pandas

Now we will explore prandas , a powerful open-source library built on top of numpy , widely used
for data manipulation and analysis. It introduces DataFrames and Series, which are highly
efficient for working with tabular data.

In this section, we cover: - Basic functionality of the library, - DataFrames and tools for
exploration, - Creating and manipulating Pandas Series and DataFrames, - Data cleaning and
standardization functionalities, - Data importing and manipulatng from structured file formats, -
Basic data exploration and summary statistics

@ITIN=ERIS

In Pandas we can create two main kind of data structure: - Pandas Series (1D labeld array); -
Pandas DataFrame (2D labeled data structure).

Both have the potential of having different types per cell/columns.
Pandas also offers a variety of tools for exploring data, such as head() , tail() ,and info() ,
which help understand the dataset quickly.

[23]: # creating a Pandas Series
series = pd.Series([1, "a", 3, "b", 5])
print(f"Pandas Series:\n\
{series}")

Pandas Series:
1

T WL

0
1
2
3
4
dtype: object
[31]: print("Same Pandas series seen with the enhanced Pandas data visualizzation:")
series
Same Pandas series seen with the enhanced Pandas data visualizzation:

[31]: 1

T WL

0
1
2
3
4
d

type: object

Pandas Series

Series are easily explorable with the pandas tools to obtain information about the content of the
data.

For instance, we can explore the Series with a simple loop, using enumerate(series.items()) to
extrapolate positions and values of some cells, also posing some particular conditions.

Or we can use series.apply toapplya tlambda x function, as a small anonymous function
inside another function for retrieving data.

In this case is inside isinstance() function, that returns True if the specified object is of the
specified type, otherwise Fatse .

In this way we can point out specific data or outliers by type or other conditions.

@ITIN=RIS

[24]: # Basic exploration and analysis of the Pd series

print(f"Series total length:\n{len(series)}\n")

print("Series type and position analysis:")

for i, (index, value) in enumerate(series.items()):
print(f"Position: {index}, Value: {value}, Type: {type(value)l}")

Localization of specific cells

Strings localization

strings = series.apply(lambda x: isinstance(x, str))
print(f"\nNumber of strings cells:{len(series[strings])}")
print("\nPosition of strings cells:")
print(series[strings])

Int localization

integers = series.apply(lambda x: isinstance(x, int))
print(f"\nNumber of integers cells:{len(series[integers])}")
print("\nPosition of integers cells:")
print(series[integers])

Series total length:
5

Series type and position analysis:

Position: O, Value: 1, Type: <class 'int'>
Position: 1, Value: a, Type: <class 'str'>
Position: 2, Value: 3, Type: <class 'int'>
Position: 3, Value: b, Type: <class 'str'>
Position: 4, Value: 5, Type: <class 'int'>

=
[

Number of strings cells:2
Position of strings cells:
1 a

3 b

dtype: object

Number of integers cells:3

Position of integers cells:

0 1
2 3
4 5

dtype: object
Pandas DataFrame
Unlike the Series, a DataFrame is a 2D labeled data structure, widely used because it can have
columns of different types.

It can be created: - starting from a dictionary, - populated row by row, - by the combination of
other dataframes or data structures.

It offers a variety of tools for exploring data, such as .head() , .tail(), .sort_index ,
.sort_value and .info() , which help understand the dataset quickly.”

@ ITIN=RIS

[33]: # creating a DataFrame and Basic Exploration
Create a DataFrame from a dictionary
data = {
'Station': ['Se1', 'Se2', 'S03', 'S04',6'S05',6'S06'], #coll
'AverageTemp (T°C)': [25.5, 26.1, 27.3, 25.8, 25.1, 24.9,], #col2
'"AverageUmidity (%)': [58, 67, 70, 61, 59, 55] #col3
}

df = pd.DataFrame(data)

print(f"Pandas dataframe:\n {df}")

Pandas dataframe:
Station AverageTemp (T°C) AverageUmidity (%)

0 So1 25.5 58
1 S02 26.1 67
2 S03 27.3 70
3 S04 25.8 61
4 S05 25.1 59
5 S06 24.9 55

[34]: print("same Pandas dataframe seen with the enhanced Pandas data visualizzation:")
df

Same Pandas dataframe seen with the enhanced Pandas data visualizzation:

[34]: Station Averagelemp (T°C) AverageUmidity (%)
0 S01 25.5 58
1 S02 26.1 67
2 S03 27.3 70
3 S04 25.8 61
4 S05 25.1 59
5 S06 24.9 55

[35]: # Basic exploration and analysis of the Pd Dataframe
General basic information about the DataFrame
print("DataFrame Info:\n")
print(f"{df.info()}\n")

Display the first few rows
print(f"DataFrame Head:\n{df.head()}\n")

Display the last few rows
print(f"DataFrame tail:\n{df.tail()}\n")

Display the dataframe sorted by descending values
print(f"DataFrame sorted by AverageTemp (T°C) values:\n{df.sort_values(by=
['AverageTemp (T°C)'],ascending=False)}\n")

Display the dataframe sorted by descending indexes
print(f"DataFrame sorted by descending indexes:\n{df.sort_index(ascending=False)}")

@ ITIN=RIS

DataFrame Info:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 6 entries, 0 to 5

Data columns (total 3 columns):
Non-Null Count Dtype

Column
0 Station
1 AverageTemp (T°C)
2 AverageUmidity (%)

6 non-null object
6 non-null float64
6 non-null int64

dtypes: float64(1), int64(1), object(1)
memory usage: 272.0+ bytes

None

DataFrame Head:

Station AverageTemp (T°C)
25.5

SO1
S02
S03
S04
S05

rOWONRO

DataFrame tail:

26.
27.
25.
25,

= oo wkR

Station AverageTemp (T°C)

S02
S03
S04
S05
S06

b~ wWN R

26.
27.
25.
25.
24,

[Co I e G

AverageUmidity (%)
58
67
70
61
59

AverageUmidity (%)
67
70
61
59
55

DataFrame sorted by AverageTemp (T°C) values:
Station AverageTemp (T°C)

S03
S02
S04
So1
S05
S06

OOhOoWEN

27

26.
25.
25.
25,
24,

O R 010 EFE W

AverageUmidity (%)
70
67
61
58
59
55

DataFrame sorted by descending indexes:
Station AverageTemp (T°C)

S06
S05
S04
S03
S02
So1

O NWhO

24,
25.
25.
27.
26.
25.

©

O R WOoEk

AverageUmidity (%)
55
59
61
70
67
58

In this way we can easly strip the DataFrame in all its “informational direction” and sample its

contents, detecting any issues or crucial information.

Now we explore how to manipulate Series and DataFrames.

Common operations include: - adding new columns, - renaming columns, - performing basic

arithmetic operations.

[36]:

Adding a new column to the DataFrame
df['NewColumn'] = [True, True, True, True, False, True]
print(f"DataFrame with a new column:\n{df}\n")

Renaming a column

df = df.rename(columns={'NewColumn': 'Online'})
print(f"DataFrame with renamed column:\n{df}\n")

@ITIN=SRIS

DataFrame with a new column:
Station AverageTemp (T°C) AverageUmidity (%) NewColumn

0 Se1 25.5 58 True
1 S02 26.1 67 True
2 S03 27.3 70 True
3 S04 25.8 61 True
4 S05 25.1 59 False
5 S06 24.9 55 True

DataFrame with renamed column:
Station AverageTemp (T°C) AverageUmidity (%) Online

0 SO1 25.5 58 True
1 S02 26.1 67 True
2 S03 27.3 70 True
3 S04 25.8 61 True
4 S05 25.1 59 False
5 S06 24.9 55 True

Data cleaning is always a crucial step before any kind of analysis, now we will see how to handle

missing values and standardize data.

We can use functions like: - dropna() and fillna() for missing data filling, - .str.title() and
.astype() for data standardizaion.

[29]: # Create a DataFrame with missing values and inconsistent strings
raw_data = {
'Station': ['S@1', 's02', np.nan, 'sG3', np.nan],
'Measurement(T°C)': [15, np.nan, 15.33, 10.2, np.nan],
'City': ['New York', 'los angeles', 'Chicago', np.nan, np.nan],
}

df_raw = pd.DataFrame(raw_data)

print(f"Original DataFrame with Missing/Inconsistent Data:\n\
{df_raw}\n")

Keep only the rows with at least 2 non-NA values and create a copy.
df_filtered = df_raw.dropna(thresh=2).copy()

print(f"Original DataFrame with at least 2 non NaN values:\n\
{df_filtered}\n")

Calculate mean from original dataset
mean_measurement = df_raw['Measurement(T°C)"'].mean()

Filling DataFrame missing numerical values, with the mean of that column, and
forcing values to int

df_filtered.loc[:, 'Measurement(T°C)'] =
df_filtered['Measurement(T°C)'].fillna(mean_measurement).astype(int)

Filling missing categorical values with a placeholder,
df_filtered.loc[:, 'Station'] = df_filtered['Station'].fillna('Unknown")
df_filtered.loc[:, 'City'] = df_filtered['City'].fillna('Unknown'")

Standardize string upper/lower cases
df_filtered.loc[:, 'Station'] = df_filtered['Station'].str.title()
df_filtered.loc[:, 'City'] = df_filtered['City'].str.title()

print(f"Cleaned and Standardized DataFrame:\n{df_filtered}")
@ITIN=RIS

Original DataFrame with Missing/Inconsistent Data:

Station Measurement(T°C) City
0] S01 15.00 New York
1 s02 NaN los angeles
2 NaN 15.33 Chicago
3 s03 10.20 NaN
4 NaN NaN NaN

Original DataFrame with at least 2 non NaN values:

Station Measurement(T°C) City
0 S01 15.00 New York
1 s02 NaN los angeles
2 NaN 15.33 Chicago
3 s03 10.20 NaN

Cleaned and Standardized DataFrame:

Station Measurement(T°C) City
0 So1 15.0 New York
1 S02 13.0 Los Angeles
2 Unknown 15.0 Chicago
3 S03 10.0 Unknown

Data import

Pandas also offers powerful functions to import data from various structured file formats (CSV,
Excel, JSON, etc.).

In this section, we'll see the data importing from a CSV file using pd.read_csv and perform basic
manipulations on it.

[38]: # Data retrieved from https://www.dati.gov.it/view-dataset/dataset?id=9bacb31d-1b49-
4841-b87e-8a442e133aa8
Reading a CSV file
df_imported = pd.read_csv('files/Dati_Meteo_Giornalieri_Stazione _Matera.csv')

print("\

Daily weather data taken from the weather station installed on top of the Matera Town
Hall.\n\

The data will be collected daily at 12:00 noon, unless otherwise unforeseen
impediments.\n\

Legend:\n \

- TM=average temperature,\n \

- UM=average humidity,\n \

- VVM=average wind speed m/s,\n \

- PRE=precipitation mm,\n \

- RSM=average solar radiation,\n \

- PATM=average atmospheric pressure,\n \

- QA PS PM=air quality fine particulate matter,\n \

- QA PG PM=coarse dust air quality.\

print("\n Imported DataFrame from CSV:")
df_imported

@ ITIN=RIS

Daily weather data taken from the weather station installed on top of the Matera Town

Hall.

The data will be collected daily at 12:00 noon,

impediments.
Legend:
- TM=average temperature,
- UM=average humidity,

- VVM=average wind speed m/s,

- PRE=precipitation mm,
- RSM=average solar radiation,
- PATM=average atmospheric pressure,
- QA PS PM=air quality fine particulate matter,
- QA PG PM=coarse dust air quality.

Imported DataFrame from CSV:

unless otherwise unforeseen

[38]: DATA ™ UM VWM PRE RSM PATM QAPSPM QAPGPM ORA
0 03/12/2021 7,420 95,300 2,750 0,250 24,6 951 0,500 0,150 12:00

1 04/12/2021 9,490 72,600 3,590 0,000 359 957 0,530 0,000 12:00

2 05/12/2021 11,900 79,900 3,970 0,000 384 952 0,040 0,010 12:00

3 06/12/2021 7,400 85,800 2,120 0,000 185,0 947 0,000 0,000 12:00

4 07/12/2021 6,480 72,900 4,980 0,000 320,0 952 0,140 0,100 12:00
200 05/08/2022 33,500 21,200 1,670 0,000 794,0 960 1,020 0,900 12:00
201 06/08/2022 ND ND ND ND ND ND ND ND 12:00
202 07/08/2022 ND ND ND ND ND ND ND ND 12:00
203 08/08/2022 ND ND ND ND ND ND ND ND 12:00
204 10/08/2022 27,100 53,500 4,400 0,000 533,0 961,0 1,370 1,500 12:00

205 rows x 10 columns

Understanding the dataset is essential.

We can start exploring it with .describe() .

[39]: # Basic Data Exploration and Summary Statistics
print(f"Summary Statistics for Imported DataFrame:\n{df_imported.describe()}\n")

Summary Statistics

DATA ™
count 205 205
unique 205 157
top 03/12/2021 ND
freq 1 15

UM
205
172

ND

15

VVM
205
161
ND
15

for Imported DataFrame:

PRE
205

6
0,000
185

RSM PATM QA PS PM QA PG PM

205
173
ND
15

205
37
ND
15

205
136
ND
15

205
48

ORA
205

0,000 12:00

50

204

Before working on precipitation (PRE) and average temperture (TM) data we have to clean and

standardize data format.

For this we can use .str.contains('").any() for localizing any problematic string, value or

symbol

@ITIN=RIS

(like in in this case, where comas were used as digital separator) and then .replace() for
replacing that with a functional one.

[40]: print(f"PRE column before any cleaning:\n{df_imported['PRE'].tail()}\n")
print(f"TM column before any cleaning:\n{df_imported['TM'].tail()}\n")

Data cleaning

Control to Replace any 'ND' with the computation friendly 'NaN',

For precipitation data

if df_imported['PRE'].astype(str).str.contains('ND').any():
df_imported['PRE'] = df_imported['PRE'].replace('ND', np.nan)

For temperature data

if df_imported['TM'].astype(str).str.contains('ND').any():
df_imported['TM'] = df_imported['TM'].replace('ND', np.nan)

Control to replace any comma with dot to standardize decimal separator
For precipitation data
if df_imported['PRE'].astype(str).str.contains(',"').any():
df_imported['PRE'] = df_imported['PRE'].str.replace(',"', '.")
For temperature data
if df_imported['TM'].astype(str).str.contains(',"').any():
df _imported['TM'] = df_imported['TM'].str.replace(',"', '.")

Convert the column to numeric, coercing errors to NaN

For precipitation data

df_imported['PRE'] = pd.to_numeric(df_imported['PRE'], errors='coerce')
For temperature data

df_imported['TM'] = pd.to_numeric(df_imported['TM'], errors='coerce')

Verify cleaning
print(f"PRE column after cleaning:\n{df_imported['PRE'].tail()}\n")
print(f"TM column after cleaning:\n{df_imported['TM'].tail()}\n")

@ ITIN=RIS

PRE column before any cleaning:
200 0,000

201 ND
202 ND
203 ND

204 0,000
Name: PRE, dtype: object

TM column before any cleaning:
200 33,500

201 ND
202 ND
203 ND

204 27,100
Name: TM, dtype: object

PRE column after cleaning:

200 0.0
201 NaN
202 NaN
203 NaN
204 0.0

Name: PRE, dtype: float64

TM column after cleaning:

200 33.5
201 NaN
202 NaN
203 NaN
204 27.1

Name: TM, dtype: float64

Then we use functions like describe() , max() , min() , mean() and median() to obtain
summary statistics and gain insights into the data.

[41]: # Summary statistics on the cleaned columns
Calculate mean and median for the precipitation and average temperature column

max_precipitation = df_imported['PRE'].max()
min_precipitation = df_imported['PRE'].min()
mean_precipitation = round(df_imported['PRE'].mean(),2)
median_precipitation = round(df_imported['PRE'].median(),2)
max_temperature = df_imported['TM'].max()

min_temperature = df_imported['TM'].min()

mean_temperature = round(df_imported['TM'].mean(),2)
median_temperature = round(df_imported['TM'].median(),2)

print(f"\

----------------- PRECIPITATION --------------------------\n\
Max Precipitation : {max_precipitation} mm\n\

Min Precipitation : {min_precipitation} mm\n\

Mean Precipitation : {mean_precipitation} mm\n\

Median Precipitation : {mean_precipitation} mm\n\
----------------- TEMPERATURE --------------------------\n\
Max Temperature : {max_temperature} °C\n\

Min Temperature : {min_temperature} °C\n\

Mean Temperature : {mean_temperature} °C\n\

Median Temperature : {mean_temperature} °C\n\

")

@ ITIN=RIS

----------------- PRECIPITATION --------------------------
Max Precipitation : 1.2 mm

Min Precipitation : 0.0 mm

Mean Precipitation : 0.01 mm

Median Precipitation : 0.01 mm

----------------- TEMPERATURE -----------cc-mmmemmmm oo -
Max Temperature : 34.9 °C

Min Temperature : 1.27 °C

Mean Temperature : 16.96 °C

Median Temperature : 16.96 °C

We can use functions like value_counts() an .groupby() to get some deep specific statistics

between different values present in the DataFrame.

[42]: # checking the number of events that exceeded 1 mm of Precipitation

print(f"\

Number of Precipitation events that exceede 1mm :\
\n\
{((df_imported['PRE']>1).value_counts())}\
\n\

ll)

df_imported['TM'] = pd.to_numeric(df_imported['TM'], errors='coerce')

print(f"\
Total rain mm for days having T<5°C:\
\n\

(T°C)

\n\

{df_imported[df_imported['TM'] < 5].groupby('TM')['PRE'].sum()}\

ll)

(mm)\

Number of Precipitation events that exceede 1mm

False

Tr

ue

204
1

Name: PRE, dtype: inté4

Total rain mm for days having T<5°C:

(T°C)

™
1.

2
3
3
3
3.
4
4
4
N

a

27

.18
.13
.79
.83

99

.34
.52
.71
me:

(mm)

[oNoNoNoNoNoNoNo]
[oNoNoNoNoNoNONORE N

0.
PRE, dtype: float64

Moreover, Pivot tables are powerful tools for reorganizing and summarizing data, allowing a

DataFrame to be transformed into a form that facilitates analysis.

In Pandas, the .pivot_table() function is used to create spreadsheet-like pivot tables.

@ ITIN=RIS

[43]: # creating a climatic DataFrame as example
data = {
'Region': ['Puglia', 'Puglia', 'Puglia', 'Puglia',
'Basilicata', 'Basilicata', 'Basilicata', 'Basilicata',
'Molise', 'Molise', 'Molise', 'Molise'],

'Season': ['Inverno', 'Primavera', 'Estate', 'Autunno',
'"Inverno', 'Primavera', 'Estate', 'Autunno',
'Inverno', 'Primavera', 'Estate', 'Autunno'],

'Mean_Temp(©°C)': [8, 15, 27, 18, 5, 12, 25, 16, 3, 10, 24, 14],
'Mean_Prec(mm)': [80, 60, 20, 70, 100, 75, 30, 90, 120, 85, 40, 95],
'Mean_Umid(%)': [75, 65, 50, 70, 80, 70, 55, 75, 85, 75, 60, 78]

}

df_climatic = pd.DataFrame(data)

Creating a pivot table to display average temperatures by region and season
print("Average temperatures by region and season:")

p_table = pd.pivot_table(df_climatic, values='Mean_Temp(°C)', index='Region',
columns="'Season', aggfunc='mean')

p_table

Average temperatures by region and season:

[43]: Season Autunno Estate Inverno Primavera
Region

Basilicata 16 25 5 12

Molise 14 24 3 10

Puglia 18 27 8 15

After cleaning, processing, or analyzing your dataset, you might need to save your results.
Pandas provides the .to_csv() function, which allows you to export a DataFrame to a CSV file.

[44]: # Save DataFrame to CSV
df_climatic.to_csv(
'files/southern_regions_climate_data.csv', # name of the saved file
index=False, # Excludes the index column from the CSV
sep=',;"', # Set the separator (useful especially when we handle some natural
language material inside some cells)
header=True # Keeps the header of the table in the CSV

)

print("File saved successfully.")

File saved successfully.

6 - Exercises

Exercise: Integrative Data Analysis Challenge

Write code and document your process in Markdown cells.

Input
@ ITIN=RIS

1. Dataset Import

« Choose a publicly available CSV file, or
« Use the provided dataset located at: >files/dataset.csv

Operations:

2. Data Cleaning with Pandas

 Load the dataset into a Pandas DataFrame.

« Explore the dataset using Pandas functions (e.g., .info() , .describe() , .head()).

« Handle missing values (e.g., forward fill, mean imputation, or removal),

« ldentify and filter out outliers if necessary,

« Perform relevant data transformations (e.g., renaming columns, adjusting data types),
« Compute aggregated statistics (e.g. mean, median, standard deviation etc.),

« Extract meaningful statistics and create a pivot table using significant data,

« Add a new empty column to the dataset.

3. Numerical Operations with NumPy

« Normalize numerical columns if needed (e.g., adjusting types, handling decimal separators),
« Utilize NumPy tools to process numerical values,

« Populate the previously created empty column with calculated or transformed data.

4. Saving the Processed Data

« Create a new directory for the exercise: >exercise/
« Save the cleaned and processed dataset as: > exercise/result.csv

Output

A structured and cleaned dataset stored in: >exercise/result.csv

ready for further analysis in the next lesson.

[1: ## Do you exercise here:

@ITIN=RIS

