T Finanziato \ Ministero : .
£ % | dall'Unione europea :- dell’Universita i Italiadomani
Tl NextGenerationEU & e della Ricerca EERLRERIE o

«] Consiglio Nazionale
delle Ricerche

A » <no title> » Manipulate text files in bash

Manipulate text files in bash

The bash language has several commands to read and manipulate txt files, such as: head, tail,

more, less, sort, join, wc, unig. Here we are going to use some of them.

cd /media/sf_LVM_shared/my_SE_data/exercise
jupyter-notebook bashinter_osgeo.ipynb

Pattern matching

Create a little file from a large file:

[4]: ! head -1000 txt/aver_month_nuts3_fire.asc > input.txt

Read/explore the input.txt file

[5]: ! head input.txt

NUTS YYYY MM 0 BAREA
BG311l 2005 04 2 0.282594
BG311 2006 11 2 0.600812
BG311 2007 01 3 65.8331
BG311 2007 02 3 9.78246
BG311l 2007 04 2 44.4997
BG311 2007 06 2 30.5861
BG311l 2007 07 2 5534.21
BG312 2005 04 3 10.6419
2

BG312 2006 10 0.293182
[6]: ! tail input.txt

DE425 2000 06 4 3.1973
DE425 2000 07 4 0.724873
DE425 2000 08 4 4.67528
DE425 2000 09 3 0.194243
DE425 2001 04 2 0.0724194
DE425 2001 05 2 0.66708
DE425 2001 08 2 0.0421668
DE425 2002 02 2 0.0125149
DE425 2002 03 2 0.492932
DE425 2002 04 4 1.06466

Count the line/word/character in a input.txt

@ITIN=ERIS

https://spatial-ecology.net/docs/build/html/index.html
https://spatial-ecology.net/docs/build/html/BASH/index.html

[7]:

I wc input.txt

1000 5000 24535 input.txt

Search for a word in a file

[o]:

%%bash

grep "2007" input.txt |

BG311
BG311
BG311
BG311
BG311
BG312
BG312
BG312
BG312
BG312

2007
2007
2007
2007
2007
2007
2007
2007
2007
2007

01
02
04
06
07
01
02
03
04
05

3

3
2
2
2
3
3
3
3
3

Sorting a file

65.8331
9.78246
44,4997
30.5861
5534.21
114.535
17.3247
322.063
521.189
4.13178

head

| want to search for a command able to sort the input.txt table based on the Year column (YYYY).

[10]:

I man

apt-sortpkgs (1)
bunzip2 (1)

bzip2
comm (

-k

(1)
1)

sort

heapsort (3bsd)

mergesort (3bsd)
osmium-merge (1)

osmium-sort (1)
otbcli_ConvertSensorToGeoPoint (1) - OTB ConvertSensorToGeoPoint application
otbgui_ConvertSensorToGeoPoint (1) - OTB ConvertSensorToGeoPoint application

radixsort (3bsd)

sort (

sortshp (1)

1)

sradixsort (3bsd) -

tsort

(1)

Utility to sort package index files

a block-sorting file compressor, v1.0.6
a block-sorting file compressor, v1.0.6
compare two sorted files line by 1line
sort functions

sort functions

merge several sorted OSM files into one
sort OSM files

radix sort

sort lines of text files
sort a Shape data set
radix sort

perform topological sort

One of the last lines contain: sort (1) - sort lines of text files So i will search how to use the sort

command:

[11]:

I man

sort

@ITIN=ERIS

SORT(1) User Commands SORT(1)

NAME

sort - sort lines of text files
SYNOPSIS

sort [OPTION]... [FILE]...

sort [OPTION]... --filesO-from=F
DESCRIPTION

Write sorted concatenation of all FILE(s) to standard output.
wWith no FILE, or when FILE is -, read standard input.

Mandatory arguments to long options are mandatory for short options
too. Ordering options:

-b, --ignore-leading-blanks
ignore leading blanks

-d, --dictionary-order
consider only blanks and alphanumeric characters

-f, --ignore-case
fold lower case to upper case characters

-g, --general-numeric-sort
compare according to general numerical value

-i, --ignore-nonprinting
consider only printable characters

-M, --month-sort
compare (unknown) < 'JAN' < ... < 'DEC'

-h, --human-numeric-sort
compare human readable numbers (e.g., 2K 1G)

-n, --numeric-sort
compare according to string numerical value

-R, --random-sort
shuffle, but group identical keys. See shuf(1)

--random-source=FILE
get random bytes from FILE

-r, --reverse
reverse the result of comparisons

--Sort=wORD
sort according to WORD: general-numeric -g, human-numeric -h,
month -M, numeric -n, random -R, version -V

-V, --version-sort
natural sort of (version) numbers within text

Other options:

--batch-size=NMERGE
merge at most NMERGE inputs at once; for more use temp files

-c, --check, --check=diagnose-first
check for sorted input; do not sort

-C, --check=quiet, --check=silent
like -c, but do not report first bad line

--compress-program=PROG
compress temporaries with PROG; decompress them with PROG -d

--debug @ITIN=ERIS

AUTHOR

annotate the part of the line used to sort, and warn about ques-
tionable usage to stderr

--filesO-from=F
read input from the files specified by NUL-terminated names in
file F; If F is - then read names from standard input

-k, --key=KEYDEF
sort via a key; KEYDEF gives location and type

-m, --merge
merge already sorted files; do not sort

-0, --output=FILE
write result to FILE instead of standard output

-s, --stable
stabilize sort by disabling last-resort comparison

-S, --buffer-size=SIZE
use SIZE for main memory buffer

-t, --field-separator=SEP
use SEP instead of non-blank to blank transition

-T, --temporary-directory=DIR
use DIR for temporaries, not $TMPDIR or /tmp; multiple options
specify multiple directories

--parallel=N
change the number of sorts run concurrently to N

-u, --unique
with -c, check for strict ordering; without -c, output only the
first of an equal run

-z, --zero-terminated
line delimiter is NUL, not newline

--help display this help and exit

--version
output version information and exit

KEYDEF is F[.C][OPTS][,F[.C][OPTS]] for start and stop position, where
F is a field number and C a character position in the field; both are
origin 1, and the stop position defaults to the line's end. If neither
-t nor -b is in effect, characters in a field are counted from the
beginning of the preceding whitespace. OPTS is one or more single-let-
ter ordering options [bdfgiMhnRrV], which override global ordering
options for that key. If no key is given, use the entire 1line as the
key. Use --debug to diagnose incorrect key usage.

SIZE may be followed by the following multiplicative suffixes: % 1% of
memory, b 1, K 1024 (default), and so on for M, G, T, P, E, Z, Y.

*** WARNING *** The locale specified by the environment affects sort

order. Set LC_ALL=C to get the traditional sort order that uses native
byte values.

Written by Mike Haertel and Paul Eggert.

REPORTING BUGS

GNU coreutils online help: <http://www.gnu.org/software/coreutils/>
Report sort translation bugs to <http://translationproject.org/team/>

COPYRIGHT

Copyright © 2017 Free Software Foundation, Inc. License GPLv3+: GNU
GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. @ITlNERlS

SEE ALSO
shuf(1),

GNU coreutils 8.28

uniq(1)

Full documentation at: <http://www.gnu.org/software/coreutils/sort>

or available locally via: info '(coreutils) sort invocation'

January 2018

The -k option identify the column of sorting:

Sorting based on column number 2 (-k 2,2)

sorting based on column number 2 and then number 1 (-k 2,1)

See again man sort for more options like -n -g

Alfa numeric sorting:

[12]:

I sort -k 2,2 input.txt
DE121 1997 05 2 0.232016
DE122 1997 05 2 0.0637817
DE124 1997 03 2 1.28501
DE125 1997 05 2 0.107349
DE128 1997 04 2 0.340913
DE129 1997 03 2 0.297982
DE12A 1997 03 2 0.0815152
DE123 1998 04 2 0.434829
DE124 1998 03 2 0.0796515
DE12A 1998 05 2 0.345525
sort: write failed:

sort:

write error

General numerical sorting

[13]:

String numerical sorting

[14]:

! sort -k 2,2 -g

input. txt

NUTS YYYY MM O BAREA

DE121
DE122
DE124
DE125
DE128
DE129
DE12A
DE123
DE124
sort:

sort:

I sort -k 2,2 -n

1997
1997
1997
1997
1997
1997
1997
1998
1998

write failed:

05
05
03
05
04
03
03
04
03

NNNNNNNDDNDDN
[cNoNoNoNoNoN

0.

232016

0.0637817

write error

.28501

.107349
.340913
.297982
.0815152
.434829
.0796515
'standard output':

input. txt

'standard output':

| head

| head

| head

Broken pipe

Broken pipe

SORT(1)

@ITIN=ERIS

Save the result of a command in a file by

[15]:

NUTS YYYY MM 0 BAREA

DE121 1997 05 2 0.232016
DE122 1997 05 2 0.0637817
DE124 1997 03 2 1.28501
DE125 1997 05 2 0.107349
DE128 1997 04 2 0.340913
DE129 1997 03 2 0.297982
DE12A 1997 03 2 0.0815152
DE123 1998 04 2 0.434829
DE124 1998 03 2 0.0796515

sort: write failed: 'standard output': Broken pipe
sort: write error

wenn
>

symbol

I sort -k 2,2 -g input.txt > input_s.txt
I wc -1 input_s.txt

1000 input_s.txt

Which is the first and last year of observations?

Append the command result to a file

Add the result of a command in the already existing “output” file by ‘>>’ symbol

[16]:

I sort -k 3,3 -g input.txt >> input_s.txt
' wc -1 input_s.txt

2000 input_s.txt

Use the variable

Define the value of the variable, print it by putting it in front of the $ symbol

[18]:

I var=21
I echo $var

Define the value of the variable using the result of a command

[19]:

%%bash
var=$(grep "2007" input.txt | wc -1)
echo $var

189

@ITIN=ERIS

For loop

In computer science, a for-loop (or simply for loop) is a control flow statement for specifying

iteration, which allows code to be executed repeatedly (source

https:/en.wikipedia.org/wiki/For_loop). We want to automatically count how many observations
exist in the years 2007, 2006 and 2005 in the input.txt file. To solve this task we can use the
variable and list word/number loop function

[21]:

%%bash

for var in 2005 2006 2007; do
grep $var input.txt

done |

BG311
BG312
BG313
BG314
BG315
BG315
BG315
BG321
BG321
BG322

head

2005
2005
2005
2005
2005
2005
2005
2005
2005
2005

04
04
03
03
03
04
06
03
04
03

and now we count

[22]:

%%bash

WNWNNNRERNWDN

0.282594
10.6419
48.0927
2.21985
125.772
95.5232
3.70607
59.201
0.562725
6.33855

for var in 2005 2006 2007; do
grep $var input.txt | wc -1

done

121
280
189

Now we want to automatically count and save in a file how many observations exist from year

2000 to 2008 in input.txt file. For this use the serial number list loop function.

[24]:

[25]:

%%bash

rm -f input_wc.txt
for ((var=2000 ; var<=2008 ; var++)); do
grep $var input.txt | wc -1

done

! head input_wc.txt

>> input_wc. txt

@ITIN=ERIS

https://en.wikipedia.org/wiki/For_loop

62
34
48
93
46
121
280
189
2

If condition in a for loop

As for the previews exercise, we want to automatically count how many observations exist from
year 2000 to 2008 in input.txt file, but not for the year 2003. For this you should use the serial
number list loop function with the if condition.

[26]:

%%bash
rm no2003output.txt
for ((year=2000 ; year<=2008 ; year++)); do
if [$year != 2003] ; then
grep " $year " txt/aver_month_nuts3_fire.asc
fi
done
cat no2003output.txt

2778
2643
2641
2894
2837
3011
775
0

| we -1 >> no2003output.txt

rm: cannot remove 'no2003output.txt': No such file or directory

The same operation can be done by saving the file outised the for loop. When to use the first

approch and when to use the second one?

[29]:

%%bash
rm no2003output. txt
for ((year=2000 ; year<=2008 ; year++)); do
if [$year !'= 2003] ; then
grep " $year " txt/aver_month_nuts3_fire.asc
fi
done > no2003output.txt
cat no2003output.txt

2778
2643
2641
2894
2837
3011
775
(0]

| we -1

@ITIN=ERIS

| need to know in each year which was the biggest fire and print it. | can use the sort command
and get the largest fire in the last position.

[30]: %%bash
for ((year=2000 ; year<=2008 ; year++)); do
if [$year !'= 2003] ; then
grep " $year " txt/aver_month_nuts3_fire.asc | sort -k 5,5 -g | tail -1
fi
done

GR253 26000 07 3 23216.3
PT117 2001 08 464 7226.27
PT118 2002 08 448 14574.7
PT150 2004 07 5 16599
PT164 2005 08 114 41830.3
ES114 2006 08 554 52093.4
BG422 2007 08 4 12972.6

Exercise

Perform the same loop but excluding the year from 2002 to 2004. Use the “man test” to see the
option for the if condition. Googled “if statement with multiple condition bash”.

Checking the flow statement

How can | check that the results are correct and that i'm using the correct variables? By printing
the variable during the process and if you need also in the file.

[31]: %%bash
rm no2003output.txt
for ((year=2000 ; year<=2008 ; year++)); do
if [$year != 2003] ; then
echo processing year $year
grep " $year " txt/aver_month_nuts3_fire.asc | wc -1 >> no2003output.txt
fi
done

processing year 2000
processing year 2001
processing year 2002
processing year 2004
processing year 2005
processing year 2006
processing year 2007
processing year 2008

[33]: ! head no2003output.txt

2778
2643
2641
2894
2837
3011
775
0

@ITIN=ERIS

| can also run manually a command and compare the results.

[34]:

[35]:

I grep " 2007 " txt/aver_month_nuts3_fire.asc
I grep " 2002 " txt/aver_month_nuts3_fire.asc

775
2641

%%bash

time for ((year=2000 ; year<=2008 ; year++)); do

if [$year != 2003] ;
echo year $year

grep " $year " txt/aver_month_nuts3_fire.asc

fi
done

year 2000
2778
year 2001
2643
year 2002
2641
year 2004
2894
year 2005
2837
year 2006
3011
year 2007

775
year 2008
0

real OmO.132s
user Ome.021s
sys Om0O.036s

13890

13215

13205

14470

14185

15055

3875

Debugging

67910

64585

64534

70924

69493

73972

19026

The shell reports message and status symbols in case of error syntax, incorrect commands or

inexistent files. Here are reported the most common errors using the example:

[36]:

Run the script and see the error results.

%%bash

for ((year=2000 ; year<=2008 ; year++)); do
grep " $year " txt/aver_month_nuts3_fire.asc

done

2778
2643
2641
3078
2894
2837
3011
775
0

@ITIN=ERIS

The loop was not close and after the bash error a series of no sense python errors are reported.

[37]: %%bash
for ((year=2000 ; year<=2008 ; year++)); do
grep " $year " txt/aver_month_nuts3_fire.asc | wc -1

bash: line 3: syntax error: unexpected end of file

CalledProcessError Traceback (most recent call last)
<ipython-input-37-94fe56a6d559> in <module>

---->1 get_ipython().run_cell_magic('bash', '', 'for ((year=2000 ; year<=2008 ;
year++)); do\n grep " $year " txt/aver_month_nuts3_fire.asc | wc -1\n')

~/miniconda3/1ib/python3.8/site-packages/IPython/core/interactiveshell.py in
run_cell_magic(self, magic_name, 1line, cell)

2397 with self.builtin_trap:

2398 args = (magic_arg_s, cell)
-> 2399 result = fn(*args, **kwargs)

2400 return result

2401

~/miniconda3/1ib/python3.8/site-packages/IPython/core/magics/script.py in
named_script_magic(line, cell)

140 else:
141 line = script
--> 142 return self.shebang(line, cell)
143
144 # write a basic docstring:

~/miniconda3/1ib/python3.8/site-packages/decorator.py in fun(*args, **kw)

230 if not kwsyntax:
231 args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)
233 fun.__name__ = func.__name__
234 fun.__signature__ = sig

~/miniconda3/1ib/python3.8/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)

185 # but it's overkill for just that one bit of state.
186 def magic_deco(arg):
--> 187 call = lambda f, *a, **k: f(*a, **k)
188
189 if callable(arg):

~/miniconda3/1ib/python3.8/site-packages/IPython/core/magics/script.py in shebang(self,
line, cell)

243 sys.stderr.flush()

244 if args.raise_error and p.returncode!=0:
--> 245 raise CalledProcessError(p.returncode, cell, output=out,
stderr=err)

246

247 def _run_script(self, p, cell, to_close):

CalledProcessError: Command 'b'for ((year=2000 ; year<=2008 ; year++)); do\n grep "
$year " txt/aver_month_nuts3_fire.asc | wc -1\n'' returned non-zero exit status 2.

Bash: syntax error near unexpected token *(’

The error is near the brackets. Often it is just a space or a bracket that has not been closed

[38]: %%bash
for ((year=2000 ; year<=2008 ; year++)); do
grep " $year " txt/aver_month_nuts3_fire.asc | wc -1

done @ITIN=ERIS

bash: line 1: syntax error near unexpected token ('
bash: line 1: “for ((year=2000 ; year<=2008 ; year++)); do'

CalledProcessError Traceback (most recent call last)
<ipython-input-38-186e4e61dddc> in <module>

----> 1 get_ipython().run_cell_magic('bash', '', 'for ((year=2000 ; year<=2008 ;
year++)); do\n grep " $year " txt/aver_month_nuts3_fire.asc | wc -1 \ndone \n')

~/miniconda3/1ib/python3.8/site-packages/IPython/core/interactiveshell.py in
run_cell_magic(self, magic_name, line, cell)

2397 with self.builtin_trap:

2398 args = (magic_arg_s, cell)
-> 2399 result = fn(*args, **kwargs)

2400 return result

2401

~/miniconda3/1ib/python3.8/site-packages/IPython/core/magics/script.py in
named_script_magic(line, cell)

140 else:
141 line = script
--> 142 return self.shebang(line, cell)
143
144 # write a basic docstring:

~/miniconda3/1ib/python3.8/site-packages/decorator.py in fun(*args, **kw)

230 if not kwsyntax:
231 args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)
233 fun.__name__ = func.__name__
234 fun.__signature__ = sig

~/miniconda3/1lib/python3.8/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)

185 # but it's overkill for just that one bit of state.
186 def magic_deco(arg):
--> 187 call = lambda f, *a, **k: f(*a, **k)
188
189 if callable(arg):

~/miniconda3/1ib/python3.8/site-packages/IPython/core/magics/script.py in shebang(self,
line, cell)

243 sys.stderr.flush()

244 if args.raise_error and p.returncode!=0:
--> 245 raise CalledProcessError(p.returncode, cell, output=out,
stderr=err)

246

247 def _run_script(self, p, cell, to_close):
CalledProcessError: Command 'b'for ((year=2000 ; year<=2008 ; year++)); do\n grep "
$year " txt/aver_month_nuts3_fire.asc | wc -1 \ndone \n''"' returned non-zero exit
status 2.

Bash command error: use “man -k” for searching the operation that you need.

[39]: %%bash
for ((year=2000 ; year<=2008 ; year++)); do
grap " $year " txt/aver_month_nuts3_fire.asc | wc -1
done

[ooNoNoNoNoNoNoNo]

@ITIN=ERIS

bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found

Invalid command option: “wc: invalid option - ‘k”. Read carefully the manual for the wc

command.

[40]:

[41]:

import warnings; warnings.simplefilter('ignore')

%%bash
for ((year=2000 ; year<=2008 ; year++)); do

grep " $year " txt/aver_month_nuts3_fire.asc | wc -k
done

wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.

@ITIN=ERIS

CalledProcessError Traceback (most recent call last)
<ipython-input-41-74385b15380a> in <module>

----> 1 get_ipython().run_cell_magic('bash', '', 'for ((year=2000 ; year<=2008 ;
year++)); do\n grep " $year " txt/aver_month_nuts3_fire.asc | wc -k\ndone\n')

~/miniconda3/1lib/python3.8/site-packages/IPython/core/interactiveshell.py in
run_cell_magic(self, magic_name, 1line, cell)

2397 with self.builtin_trap:

2398 args = (magic_arg_s, cell)
-> 2399 result = fn(*args, **kwargs)

2400 return result

2401

~/miniconda3/1ib/python3.8/site-packages/IPython/core/magics/script.py in
named_script_magic(line, cell)

140 else:
141 line = script
--> 142 return self.shebang(line, cell)
143
144 # write a basic docstring:

~/miniconda3/1lib/python3.8/site-packages/decorator.py in fun(*args, **kw)

230 if not kwsyntax:
231 args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)
233 fun.__name__ = func.__name___
234 fun.__signature__ = sig

~/miniconda3/1ib/python3.8/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)

185 # but it's overkill for just that one bit of state.
186 def magic_deco(arg):
--> 187 call = lambda f, *a, **k: f(*a, **k)
188
189 if callable(arg):

~/miniconda3/1ib/python3.8/site-packages/IPython/core/magics/script.py in shebang(self,
line, cell)

243 sys.stderr.flush()

244 if args.raise_error and p.returncode!=0:
--> 245 raise CalledProcessError(p.returncode, cell, output=out,
stderr=err)

246

247 def _run_script(self, p, cell, to_close):
CalledProcessError: Command 'b'for ((year=2000 ; year<=2008 ; year++)); do\n grep "
$year " txt/aver_month_nuts3_fire.asc | wc -k\ndone\n'' returned non-zero exit status
1.

The file or directory does not exist: search for the correct file and directory, by using “cd” and
((del)

[42]: %%bash
for ((year=2000 ; year<=2008 ; year++)); do
grep " $year " ../aver_month_nuts3_fire.asc | wc -1
done

[oNoNoNoNoNoNoNoNo]

@ITIN=ERIS

grep:
grep:
grep:
grep:
grep:
grep:
grep:
grep:
grep:

./aver_month_nuts3_fire.
./aver_month_nuts3_fire.
./aver_month_nuts3_fire.
../aver_month_nuts3_fire.
./aver_month_nuts3_fire.
./aver_month_nuts3_fire.
../aver_month_nuts3_fire.
./aver_month_nuts3_fire.
./aver_month_nuts3_fire.

remove processed files

[43]:

I rm input_s.txt

asc:
asc:
asc:
asc:
asc:
asc:
asc:
asc:
asc:

No
No
No
No
No
No
No
No
No

such
such
such
such
such
such
such
such
such

file
file
file
file
file
file
file
file
file

or
or
or
or
or
or
or
or
or

directory
directory
directory
directory
directory
directory
directory
directory
directory

input.txt input_wc.txt no2003output.txt

@ITIN=ERIS

