
 » <no title> » Manipulate text files in bash

Manipulate text files in bash

The bash language has several commands to read and manipulate txt files, such as: head, tail,

more, less, sort, join, wc, uniq. Here we are going to use some of them.

cd /media/sf_LVM_shared/my_SE_data/exercise
jupyter-notebook bashinter_osgeo.ipynb

Pattern matching

Create a little file from a large file:

! head -1000 txt/aver_month_nuts3_fire.asc > input.txt

Read/explore the input.txt file

! head input.txt

NUTS YYYY MM 0 BAREA
BG311 2005 04 2 0.282594
BG311 2006 11 2 0.600812
BG311 2007 01 3 65.8331
BG311 2007 02 3 9.78246
BG311 2007 04 2 44.4997
BG311 2007 06 2 30.5861
BG311 2007 07 2 5534.21
BG312 2005 04 3 10.6419
BG312 2006 10 2 0.293182

! tail input.txt

DE425 2000 06 4 3.1973
DE425 2000 07 4 0.724873
DE425 2000 08 4 4.67528
DE425 2000 09 3 0.194243
DE425 2001 04 2 0.0724194
DE425 2001 05 2 0.66708
DE425 2001 08 2 0.0421668
DE425 2002 02 2 0.0125149
DE425 2002 03 2 0.492932
DE425 2002 04 4 1.06466

Count the line/word/character in a input.txt

[4]:

[5]:

[6]:

https://spatial-ecology.net/docs/build/html/index.html
https://spatial-ecology.net/docs/build/html/BASH/index.html

! wc input.txt

 1000 5000 24535 input.txt

Search for a word in a file

%%bash
grep "2007" input.txt | head

BG311 2007 01 3 65.8331
BG311 2007 02 3 9.78246
BG311 2007 04 2 44.4997
BG311 2007 06 2 30.5861
BG311 2007 07 2 5534.21
BG312 2007 01 3 114.535
BG312 2007 02 3 17.3247
BG312 2007 03 3 322.063
BG312 2007 04 3 521.189
BG312 2007 05 3 4.13178

Sorting a file

I want to search for a command able to sort the input.txt table based on the Year column (YYYY).

! man -k sort

apt-sortpkgs (1) - Utility to sort package index files
bunzip2 (1) - a block-sorting file compressor, v1.0.6
bzip2 (1) - a block-sorting file compressor, v1.0.6
comm (1) - compare two sorted files line by line
heapsort (3bsd) - sort functions
mergesort (3bsd) - sort functions
osmium-merge (1) - merge several sorted OSM files into one
osmium-sort (1) - sort OSM files
otbcli_ConvertSensorToGeoPoint (1) - OTB ConvertSensorToGeoPoint application
otbgui_ConvertSensorToGeoPoint (1) - OTB ConvertSensorToGeoPoint application
radixsort (3bsd) - radix sort
sort (1) - sort lines of text files
sortshp (1) - sort a Shape data set
sradixsort (3bsd) - radix sort
tsort (1) - perform topological sort

One of the last lines contain: sort (1) - sort lines of text files So i will search how to use the sort

command:

! man sort

[7]:

[9]:

[10]:

[11]:

SORT(1) User Commands SORT(1)

NAME
sort - sort lines of text files

SYNOPSIS
sort [OPTION]... [FILE]...
sort [OPTION]... --files0-from=F

DESCRIPTION
Write sorted concatenation of all FILE(s) to standard output.

With no FILE, or when FILE is -, read standard input.

Mandatory arguments to long options are mandatory for short options
too. Ordering options:

-b, --ignore-leading-blanks
ignore leading blanks

-d, --dictionary-order
consider only blanks and alphanumeric characters

-f, --ignore-case
fold lower case to upper case characters

-g, --general-numeric-sort
compare according to general numerical value

-i, --ignore-nonprinting
consider only printable characters

-M, --month-sort
compare (unknown) < 'JAN' < ... < 'DEC'

-h, --human-numeric-sort
compare human readable numbers (e.g., 2K 1G)

-n, --numeric-sort
compare according to string numerical value

-R, --random-sort
shuffle, but group identical keys. See shuf(1)

--random-source=FILE
get random bytes from FILE

-r, --reverse
reverse the result of comparisons

--sort=WORD
sort according to WORD: general-numeric -g, human-numeric -h,
month -M, numeric -n, random -R, version -V

-V, --version-sort
natural sort of (version) numbers within text

Other options:

--batch-size=NMERGE
merge at most NMERGE inputs at once; for more use temp files

-c, --check, --check=diagnose-first
check for sorted input; do not sort

-C, --check=quiet, --check=silent
like -c, but do not report first bad line

--compress-program=PROG
compress temporaries with PROG; decompress them with PROG -d

--debug

annotate the part of the line used to sort, and warn about ques‐
 tionable usage to stderr

--files0-from=F
read input from the files specified by NUL-terminated names in
file F; If F is - then read names from standard input

-k, --key=KEYDEF
sort via a key; KEYDEF gives location and type

-m, --merge
merge already sorted files; do not sort

-o, --output=FILE
write result to FILE instead of standard output

-s, --stable
stabilize sort by disabling last-resort comparison

-S, --buffer-size=SIZE
use SIZE for main memory buffer

-t, --field-separator=SEP
use SEP instead of non-blank to blank transition

-T, --temporary-directory=DIR
use DIR for temporaries, not $TMPDIR or /tmp; multiple options
specify multiple directories

--parallel=N
change the number of sorts run concurrently to N

-u, --unique
with -c, check for strict ordering; without -c, output only the
first of an equal run

-z, --zero-terminated
line delimiter is NUL, not newline

--help display this help and exit

--version
output version information and exit

KEYDEF is F[.C][OPTS][,F[.C][OPTS]] for start and stop position, where
F is a field number and C a character position in the field; both are
origin 1, and the stop position defaults to the line's end. If neither
-t nor -b is in effect, characters in a field are counted from the
beginning of the preceding whitespace. OPTS is one or more single-let‐

 ter ordering options [bdfgiMhnRrV], which override global ordering
options for that key. If no key is given, use the entire line as the
key. Use --debug to diagnose incorrect key usage.

SIZE may be followed by the following multiplicative suffixes: % 1% of
memory, b 1, K 1024 (default), and so on for M, G, T, P, E, Z, Y.

*** WARNING *** The locale specified by the environment affects sort
order. Set LC_ALL=C to get the traditional sort order that uses native
byte values.

AUTHOR
Written by Mike Haertel and Paul Eggert.

REPORTING BUGS
GNU coreutils online help: <http://www.gnu.org/software/coreutils/>
Report sort translation bugs to <http://translationproject.org/team/>

COPYRIGHT
Copyright © 2017 Free Software Foundation, Inc. License GPLv3+: GNU
GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

SEE ALSO
shuf(1), uniq(1)

Full documentation at: <http://www.gnu.org/software/coreutils/sort>
or available locally via: info '(coreutils) sort invocation'

GNU coreutils 8.28 January 2018 SORT(1)

The -k option identify the column of sorting:

Sorting based on column number 2 (-k 2,2)

sorting based on column number 2 and then number 1 (-k 2,1)

See again man sort for more options like -n -g

Alfa numeric sorting:

! sort -k 2,2 input.txt | head

DE121 1997 05 2 0.232016
DE122 1997 05 2 0.0637817
DE124 1997 03 2 1.28501
DE125 1997 05 2 0.107349
DE128 1997 04 2 0.340913
DE129 1997 03 2 0.297982
DE12A 1997 03 2 0.0815152
DE123 1998 04 2 0.434829
DE124 1998 03 2 0.0796515
DE12A 1998 05 2 0.345525
sort: write failed: 'standard output': Broken pipe
sort: write error

General numerical sorting

! sort -k 2,2 -g input.txt | head

NUTS YYYY MM 0 BAREA
DE121 1997 05 2 0.232016
DE122 1997 05 2 0.0637817
DE124 1997 03 2 1.28501
DE125 1997 05 2 0.107349
DE128 1997 04 2 0.340913
DE129 1997 03 2 0.297982
DE12A 1997 03 2 0.0815152
DE123 1998 04 2 0.434829
DE124 1998 03 2 0.0796515
sort: write failed: 'standard output': Broken pipe
sort: write error

String numerical sorting

! sort -k 2,2 -n input.txt | head

[12]:

[13]:

[14]:

NUTS YYYY MM 0 BAREA
DE121 1997 05 2 0.232016
DE122 1997 05 2 0.0637817
DE124 1997 03 2 1.28501
DE125 1997 05 2 0.107349
DE128 1997 04 2 0.340913
DE129 1997 03 2 0.297982
DE12A 1997 03 2 0.0815152
DE123 1998 04 2 0.434829
DE124 1998 03 2 0.0796515
sort: write failed: 'standard output': Broken pipe
sort: write error

Save the result of a command in a file by ““>”” symbol

! sort -k 2,2 -g input.txt > input_s.txt
! wc -l input_s.txt

1000 input_s.txt

Which is the first and last year of observations?

Append the command result to a file

Add the result of a command in the already existing “output” file by ‘>>’ symbol

! sort -k 3,3 -g input.txt >> input_s.txt
! wc -l input_s.txt

2000 input_s.txt

Use the variable

Define the value of the variable, print it by putting it in front of the $ symbol

! var=21
! echo $var

Define the value of the variable using the result of a command

%%bash
var=$(grep "2007" input.txt | wc -l)
echo $var

189

[15]:

[16]:

[18]:

[19]:

For loop

In computer science, a for-loop (or simply for loop) is a control flow statement for specifying

iteration, which allows code to be executed repeatedly (source

https://en.wikipedia.org/wiki/For_loop). We want to automatically count how many observations

exist in the years 2007, 2006 and 2005 in the input.txt file. To solve this task we can use the

variable and list word/number loop function

%%bash
for var in 2005 2006 2007; do
 grep $var input.txt
done | head

BG311 2005 04 2 0.282594
BG312 2005 04 3 10.6419
BG313 2005 03 2 48.0927
BG314 2005 03 4 2.21985
BG315 2005 03 2 125.772
BG315 2005 04 2 95.5232
BG315 2005 06 2 3.70607
BG321 2005 03 3 59.201
BG321 2005 04 2 0.562725
BG322 2005 03 3 6.33855

and now we count

%%bash
for var in 2005 2006 2007; do
 grep $var input.txt | wc -l
done

121
280
189

Now we want to automatically count and save in a file how many observations exist from year

2000 to 2008 in input.txt file. For this use the serial number list loop function.

%%bash
rm -f input_wc.txt
for ((var=2000 ; var<=2008 ; var++)); do
 grep $var input.txt | wc -l >> input_wc.txt
done

! head input_wc.txt

[21]:

[22]:

[24]:

[25]:

https://en.wikipedia.org/wiki/For_loop

62
34
48
93
46
121
280
189
2

If condition in a for loop

As for the previews exercise, we want to automatically count how many observations exist from

year 2000 to 2008 in input.txt file, but not for the year 2003. For this you should use the serial

number list loop function with the if condition.

%%bash
rm no2003output.txt
for ((year=2000 ; year<=2008 ; year++)); do
if [$year != 2003] ; then
 grep " $year " txt/aver_month_nuts3_fire.asc | wc -l >> no2003output.txt
fi
done
cat no2003output.txt

2778
2643
2641
2894
2837
3011
775
0

rm: cannot remove 'no2003output.txt': No such file or directory

The same operation can be done by saving the file outised the for loop. When to use the first

approch and when to use the second one?

%%bash
rm no2003output.txt
for ((year=2000 ; year<=2008 ; year++)); do
if [$year != 2003] ; then
 grep " $year " txt/aver_month_nuts3_fire.asc | wc -l
fi
done > no2003output.txt
cat no2003output.txt

2778
2643
2641
2894
2837
3011
775
0

[26]:

[29]:

I need to know in each year which was the biggest fire and print it. I can use the sort command

and get the largest fire in the last position.

%%bash
for ((year=2000 ; year<=2008 ; year++)); do
if [$year != 2003] ; then
 grep " $year " txt/aver_month_nuts3_fire.asc | sort -k 5,5 -g | tail -1
fi
done

GR253 2000 07 3 23216.3
PT117 2001 08 464 7226.27
PT118 2002 08 448 14574.7
PT150 2004 07 5 16599
PT164 2005 08 114 41830.3
ES114 2006 08 554 52093.4
BG422 2007 08 4 12972.6

Exercise

Perform the same loop but excluding the year from 2002 to 2004. Use the “man test” to see the

option for the if condition. Googled “if statement with multiple condition bash”.

Checking the flow statement

How can I check that the results are correct and that i’m using the correct variables? By printing

the variable during the process and if you need also in the file.

%%bash
rm no2003output.txt
for ((year=2000 ; year<=2008 ; year++)); do
if [$year != 2003] ; then
 echo processing year $year
 grep " $year " txt/aver_month_nuts3_fire.asc | wc -l >> no2003output.txt
fi
done

processing year 2000
processing year 2001
processing year 2002
processing year 2004
processing year 2005
processing year 2006
processing year 2007
processing year 2008

! head no2003output.txt

2778
2643
2641
2894
2837
3011
775
0

[30]:

[31]:

[33]:

I can also run manually a command and compare the results.

! grep " 2007 " txt/aver_month_nuts3_fire.asc | wc -l
! grep " 2002 " txt/aver_month_nuts3_fire.asc | wc -l

775
2641

%%bash
time for ((year=2000 ; year<=2008 ; year++)); do
if [$year != 2003] ; then
 echo year $year
 grep " $year " txt/aver_month_nuts3_fire.asc | wc
fi
done

year 2000
 2778 13890 67910
year 2001
 2643 13215 64585
year 2002
 2641 13205 64534
year 2004
 2894 14470 70924
year 2005
 2837 14185 69493
year 2006
 3011 15055 73972
year 2007
 775 3875 19026
year 2008

0 0 0

real 0m0.132s
user 0m0.021s
sys 0m0.036s

Debugging

The shell reports message and status symbols in case of error syntax, incorrect commands or

inexistent files. Here are reported the most common errors using the example:

%%bash
for ((year=2000 ; year<=2008 ; year++)); do
 grep " $year " txt/aver_month_nuts3_fire.asc | wc -l
done

2778
2643
2641
3078
2894
2837
3011
775
0

Run the script and see the error results.

[34]:

[35]:

[36]:

The loop was not close and after the bash error a series of no sense python errors are reported.

%%bash
for ((year=2000 ; year<=2008 ; year++)); do
 grep " $year " txt/aver_month_nuts3_fire.asc | wc -l

bash: line 3: syntax error: unexpected end of file

CalledProcessError Traceback (most recent call last)
<ipython-input-37-94fe56a6d559> in <module>
----> 1 get_ipython().run_cell_magic('bash', '', 'for ((year=2000 ; year<=2008 ;
year++)); do\n grep " $year " txt/aver_month_nuts3_fire.asc | wc -l\n')

~/miniconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py in
run_cell_magic(self, magic_name, line, cell)
 2397 with self.builtin_trap:
 2398 args = (magic_arg_s, cell)
-> 2399 result = fn(*args, **kwargs)
 2400 return result
 2401

~/miniconda3/lib/python3.8/site-packages/IPython/core/magics/script.py in
named_script_magic(line, cell)
 140 else:
 141 line = script
--> 142 return self.shebang(line, cell)
 143
 144 # write a basic docstring:

~/miniconda3/lib/python3.8/site-packages/decorator.py in fun(*args, **kw)
 230 if not kwsyntax:
 231 args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)
 233 fun.__name__ = func.__name__
 234 fun.__signature__ = sig

~/miniconda3/lib/python3.8/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)
 185 # but it's overkill for just that one bit of state.
 186 def magic_deco(arg):
--> 187 call = lambda f, *a, **k: f(*a, **k)
 188
 189 if callable(arg):

~/miniconda3/lib/python3.8/site-packages/IPython/core/magics/script.py in shebang(self,
line, cell)
 243 sys.stderr.flush()
 244 if args.raise_error and p.returncode!=0:
--> 245 raise CalledProcessError(p.returncode, cell, output=out,
stderr=err)
 246
 247 def _run_script(self, p, cell, to_close):

CalledProcessError: Command 'b'for ((year=2000 ; year<=2008 ; year++)); do\n grep "
$year " txt/aver_month_nuts3_fire.asc | wc -l\n'' returned non-zero exit status 2.

Bash: syntax error near unexpected token `(’

The error is near the brackets. Often it is just a space or a bracket that has not been closed

%%bash
for ((year=2000 ; year<=2008 ; year++)); do
 grep " $year " txt/aver_month_nuts3_fire.asc | wc -l
done

[37]:

[38]:

bash: line 1: syntax error near unexpected token `('
bash: line 1: `for ((year=2000 ; year<=2008 ; year++)); do'

CalledProcessError Traceback (most recent call last)
<ipython-input-38-186e4e61dddc> in <module>
----> 1 get_ipython().run_cell_magic('bash', '', 'for ((year=2000 ; year<=2008 ;
year++)); do\n grep " $year " txt/aver_month_nuts3_fire.asc | wc -l \ndone \n')

~/miniconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py in
run_cell_magic(self, magic_name, line, cell)
 2397 with self.builtin_trap:
 2398 args = (magic_arg_s, cell)
-> 2399 result = fn(*args, **kwargs)
 2400 return result
 2401

~/miniconda3/lib/python3.8/site-packages/IPython/core/magics/script.py in
named_script_magic(line, cell)
 140 else:
 141 line = script
--> 142 return self.shebang(line, cell)
 143
 144 # write a basic docstring:

~/miniconda3/lib/python3.8/site-packages/decorator.py in fun(*args, **kw)
 230 if not kwsyntax:
 231 args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)
 233 fun.__name__ = func.__name__
 234 fun.__signature__ = sig

~/miniconda3/lib/python3.8/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)
 185 # but it's overkill for just that one bit of state.
 186 def magic_deco(arg):
--> 187 call = lambda f, *a, **k: f(*a, **k)
 188
 189 if callable(arg):

~/miniconda3/lib/python3.8/site-packages/IPython/core/magics/script.py in shebang(self,
line, cell)
 243 sys.stderr.flush()
 244 if args.raise_error and p.returncode!=0:
--> 245 raise CalledProcessError(p.returncode, cell, output=out,
stderr=err)
 246
 247 def _run_script(self, p, cell, to_close):

CalledProcessError: Command 'b'for ((year=2000 ; year<=2008 ; year++)); do\n grep "
$year " txt/aver_month_nuts3_fire.asc | wc -l \ndone \n'' returned non-zero exit
status 2.

Bash command error: use “man -k” for searching the operation that you need.

%%bash
for ((year=2000 ; year<=2008 ; year++)); do
 grap " $year " txt/aver_month_nuts3_fire.asc | wc -l
done

0
0
0
0
0
0
0
0
0

[39]:

bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found
bash: line 2: grap: command not found

Invalid command option: “wc: invalid option – ‘k’”. Read carefully the manual for the wc

command.

import warnings; warnings.simplefilter('ignore')

%%bash
for ((year=2000 ; year<=2008 ; year++)); do
 grep " $year " txt/aver_month_nuts3_fire.asc | wc -k
done

wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.
wc: invalid option -- 'k'
Try 'wc --help' for more information.

[40]:

[41]:

CalledProcessError Traceback (most recent call last)
<ipython-input-41-74385b15380a> in <module>
----> 1 get_ipython().run_cell_magic('bash', '', 'for ((year=2000 ; year<=2008 ;
year++)); do\n grep " $year " txt/aver_month_nuts3_fire.asc | wc -k\ndone\n')

~/miniconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py in
run_cell_magic(self, magic_name, line, cell)
 2397 with self.builtin_trap:
 2398 args = (magic_arg_s, cell)
-> 2399 result = fn(*args, **kwargs)
 2400 return result
 2401

~/miniconda3/lib/python3.8/site-packages/IPython/core/magics/script.py in
named_script_magic(line, cell)
 140 else:
 141 line = script
--> 142 return self.shebang(line, cell)
 143
 144 # write a basic docstring:

~/miniconda3/lib/python3.8/site-packages/decorator.py in fun(*args, **kw)
 230 if not kwsyntax:
 231 args, kw = fix(args, kw, sig)
--> 232 return caller(func, *(extras + args), **kw)
 233 fun.__name__ = func.__name__
 234 fun.__signature__ = sig

~/miniconda3/lib/python3.8/site-packages/IPython/core/magic.py in <lambda>(f, *a, **k)
 185 # but it's overkill for just that one bit of state.
 186 def magic_deco(arg):
--> 187 call = lambda f, *a, **k: f(*a, **k)
 188
 189 if callable(arg):

~/miniconda3/lib/python3.8/site-packages/IPython/core/magics/script.py in shebang(self,
line, cell)
 243 sys.stderr.flush()
 244 if args.raise_error and p.returncode!=0:
--> 245 raise CalledProcessError(p.returncode, cell, output=out,
stderr=err)
 246
 247 def _run_script(self, p, cell, to_close):

CalledProcessError: Command 'b'for ((year=2000 ; year<=2008 ; year++)); do\n grep "
$year " txt/aver_month_nuts3_fire.asc | wc -k\ndone\n'' returned non-zero exit status
1.

The file or directory does not exist: search for the correct file and directory, by using “cd” and

“pwd”

%%bash
for ((year=2000 ; year<=2008 ; year++)); do
 grep " $year " ../aver_month_nuts3_fire.asc | wc -l
done

0
0
0
0
0
0
0
0
0

[42]:

grep: ../aver_month_nuts3_fire.asc: No such file or directory
grep: ../aver_month_nuts3_fire.asc: No such file or directory
grep: ../aver_month_nuts3_fire.asc: No such file or directory
grep: ../aver_month_nuts3_fire.asc: No such file or directory
grep: ../aver_month_nuts3_fire.asc: No such file or directory
grep: ../aver_month_nuts3_fire.asc: No such file or directory
grep: ../aver_month_nuts3_fire.asc: No such file or directory
grep: ../aver_month_nuts3_fire.asc: No such file or directory
grep: ../aver_month_nuts3_fire.asc: No such file or directory

remove processed files

! rm input_s.txt input.txt input_wc.txt no2003output.txt[43]:

