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landslide monitoring

IR0000032 - ITINERIS, Italian Integrated Environmental Research Infrastructures System
(D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-
Mission 4 “Education and Research” - Component 2: “From research to business” - Investment

3.1: “Fund for the realisation of an integrated system of research and innovation infrastructures”

Finanziato
dall'Unione europea
MextGenerationEL

1»\ Ministero
5 dell’Universita
2 @ della Ricerca

nnnnnnnnnn



Outline of the day
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Examples of integrated landslide monitoring

Banks of fine sediments
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Electrical resistivity of Earth Materials
Soil properties important for landslide studies

Geophysical property

Electrical resistivity
&
Chargeability

Measured property

Geophysical proxy

Moisture content

Porosity

Clay content

Derived property

Landslide properties

Groundwater table

Pore pressure

Hydraulic conductivity

Soil thickness

Residual friction angle

Cohesion

Derived property
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5G-enabled intelligent and adaptive critical infrastructure @ ITIN=ERIS
Critical Infrastructure — Supporting everyday life (

Presidential Policy Directive — Critical Infrastructure Security and Resilience:

“The Nation's critical infrastructure provides the essential services that underpin American society [...] are vital
to public confidence and the Nation's safety, prosperity, and well-being.”

Estimated amount to be spent by 2040 to repair and maintain infrastructure:
US:$12.4T worldwide: $94T

Infrastructure of the future will use connected technology to manage assets, resources & services efficiently
v




Nested sensing for slope stability assessment and early warning @ ITIN=RIS
Utilize and integrate recent advances in various fields
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California — a land of extremes @ITIN=RIS
Atmospheric rivers causing extreme rainfall, triggering landslides .'

California Geological Survey
@CAGeoSurvey

1/15 UPDATE: @CAGeoSurvey and the @USGS, in support of the
Governor’s Office of Emergency Services (@Cal OES), continue mapping
reported landslides every day. We are now at 402 slides statewide (&
counting) since 12/30/22!

#landslide #AtmosphericRiver #emergencyresponse

> 400 landslides in 15 days

California Reported Landslides
3 January 2023 Atmospheric River
Tty snisua Emergency Response

......

Mappir

o Reported Landsiide Events

Reported Landslide Density

W | I CalOES | ZUSGS

screcs for o chaeging erkd

California State Parks, Esri, HERE, Garmin, FAO, NOAA, USGS, EPA

Heavy rain and landslides in California left part of a backyard
swimming pool hanging off the edge of a cliff

Aditi Bharade Mar 17,2023.10:14 AM GMT+1

TRANSPORTATION

Caltrans reevaluating landslides, Highway 70 remains close

| OO®@

Heavy rains and landslides in Cali ia left a swimming pool dangling at the edge of a cliff. Mario Tama/Ge

An aerial view of the massive landslide located at the 15.2 mile post in Plumas County, California pictured Wednesday, March 1, 2023. (Caltrans/Contributed)
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Berkeley Lab — A playground for developing sensing technology @ I1TIN= RIS

Study site and Iandsllde hazard Easting (m)
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Geophysics & remote sensing for Landslide Hazard Assessment @ ITIN=RIS
Mapping soil thickness and vegetation distribution .'

Soil thickness Soil/Root cohesion

Soil thickness estimated using 47 boreholes and 31 ambient Total cohesion = soil cohesion + root cohesion
seismic noise measurements

a

Vegetation classified based on Planet data (3m resolution)
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Landslide hazard map @ITIN=RIS
Many areas of elevated landslide hazard .'

Soil Thickness
& Borehole
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Probability of Failure from Monte-Carlo Simulation (LandLab python code), based on infinite slope model
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Monitoring landslide reactivation during winter storm event

Moisture infiltration causes reactivation

@ITIN=RIS

.o Legend
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Landslide characteristics

Slow-moving landslide (10 mm/year)

GPS monitoring (since 2012) shows complex movements
of shallow and deeper slip surfaces

Characteristic for many slides across the site, which occur
close to the interface between Moraga (permeable) and
Orinda (non-permeable) formation
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Fiolleau et al. (2023)
Journal of Applied Geophysics
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Monitoring landslide reactivation during winter storm event

Moisture infiltration causes reactivation
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@ITIN=RIS

566700 566800 566900

Monitoring of extreme rainfall event of October 2021

Ambient seismic noise monitoring: assessing changes in
seismic/elastic properties

Seismic sighals become disturbed about 5 h before movement

Landslide is characterized by movement at the toe, followed by
movement at its top

ZE04-H40w

= -05
: -1.0

IIHWWHHWHWWWMR

- |~
8200

PP L PO FNFEPPAD PSP L PPN D AP PP P

Date [dd-HH Oct'21]

Fiolleau et al. (2023)
Journal of Applied Geophysics
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Monitoring landslide reactivation during winter storm event

@ITIN=RIS
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Landslide hazard map @ITIN=RIS
Wildfire management - Effect of vegetation (

Easting (m)
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Berkeley Lab — A playground for developing sensing technology @ I1TIN= RIS

Monitoring landslide hazard across the site
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Distributed sensor network provides real-time measurements of soil moisture/suction, and deformation

* 18 depth-distributed soil moisture/suction sensors * LoRa connectivity

* 60 deformation probes * Low-cost, low-powered devices



Low-cost, low-powered distributed sensor network
Adaptive, long-term monitoring using in-house sensor developments

Low-power (3V), low-cost ($100) deformation probe
* Temperature sensors every 10 cm
* MEMS accelerometers every 10 cm
* Depth-resolved deformation measurement
* Sampling: 5 min * Battery life: 3 years
* LoRa connectivity for real time data telemetry

* Millimeter accuracy — submillimeter sensitivity

Low-power (3.7V), low-cost ($80) SDI-12 loggers
with LoRa connectivity and feedback
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@ITIN=RIS
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Low-cost, low-powered distributed sensor network DITINERIS
Adaptive, long-term monitoring using in-house sensor developments

S‘m"ink v Berkeley Lab Sensor Network
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* All sensors connected through 2 base
stations

* Data pushed to InfluxDB — open-source database designed for time-series data

* Soil moisture/suction network operational
since Feb 2022 (initial deployment Oct’19) * Data visualized through Grafana



Subsurface response to Atmospheric Rivers @ITIN=RIS
Monitoring the site during 600 mm of rain... :
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Machine Learning to predict critical parameters
Essential for LEWS and adaptive sensing strategies

Recurrent Neural Network, Long Short-Term
memory model

* Remembers events in the past

* (Can handle data composed of various frequencies
Two approaches:

* Predict the next 1h based on the prior 24 h

* Predict 12 h based on prior 14 days

Inputs:

1-year time-series of actual and antecedent rainfall,
temperature, relative humidity, barometric pressure

Results
1h forecast has high accuracy (0.074% mean error)

12h forecast good in recovering gradual change, but
fails in forecasting sudden changes

Sufficient accuracy for adaptive sensing
strategies

1h prediction

@ITIN=RIS

Uhlemann et al. (2023) The Leading Edge
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A Step Closer Towards Predictive Understanding? @ ITIN=ERIS
Combining multiple methods and scales .'

Recent advances in geophysical and environmental sensing 7 _
llow for- wa Remote Geophysical
allowror: M 9, sensing /
: " %N I % Environmental |
* Dense sensing of critical parameters itori /
N, ¥ N egotmasts-| (feana
 Low-cost, low-powered remote deployments - o Groundwater——— /A (forecast

tab'E_—,:::—f-------fF---

//17

Integration into hydro-geomechanical modelling allows to
assess and predict slope stability

Integrated geophysical sensing allows for a predictive Hydrological
understanding of landslide processes! modelling
Factor of Safety R
Saturation
* Real-time assessment < 7
* Future prediction & ——

Geomechanical
modelling

Driving forces 17
Slip plane iilliii’
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