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Outline of the day

. Quantitative analysis of geoelectrical

monitoring data

Limitations & opportunities

Applications

Elevation [m aod]
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Why electrical and electromagnetic methods? @ ITINERIS

Electrical resistivity tomography surveys Silva et al., 2023
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https://www.sciencedirect.com/science/article/pii/S2352009423000202

Why electrical and electromagnetic methods? @ ITINERIS

Electrical resistivity tomography surveys Silva et al., 2023
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Temperature effects

Subsurface temperatures may change during monitoring

@ITIN=RIS
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Modelling temperature effects

Simplified heat equation

@ITIN=RIS

* Temperature distribution in the subsurface can be modelled using a solution to the heat equation
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Uhlemann et al. (2017), Four-dimensional
imaging of moisture dynamics during
landslide reactivation, JGR: Earth Surf., 122(1)



Modelling temperature effects ] e L
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Temperature correction of resistivity data

Ratio model

@ITIN=RIS

If we know the temperature distribution in the subsurface in space and time, we can
correct the resistivity data for seasonal temperature variation

Correction factor ~-2.0°C"" Modelled temperature
4 /
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Temperature correction of resistivity data

Example of seasonal drying processes

@ITIN=ERIS
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Monitoring examples @ITIN=RIS

Automated monitoring workflows
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Field Research Site

= Hollin Hill Research Site
= North Yorkshire, North England

= South-facing hill slope

= | ias group of Lower Jurassic
= |[nstability prone

= Complex site history

“Very slow to slow composite
multiple earth slide-earth flow”
(Chambers et al., 2011)

Landslide Dimensions:

* Back scarp -toe: ~140 m

* Slope gradient: 12°

e Lateral extent: >450 m

Chambers, J. E., Wilkinson, P. B., Kuras, O., et al. (2011). Three-dimensional

geophysical anatomy of an active landslide in Lias Group mudrocks,
Cleveland Basin, UK. Geomorphology, 125(4), 472-484.

Bedrock Formations
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Saltwick Formation
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Staithes Sandstone Formation
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Monitoring Instrumentation

Uhlemann, S., Smith, A., Chambers, J. E., et al.(2016), Assessment of
ground-based monitoring techniques applied to landslide investigations,
Geomorphology, 253, 438-451.




Geophysical Characterization of the Hollin Hill Landslide Observatory @ I1TIN=RIS
Importance of elastic parameters
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Long-term geoelectrical monitoring of Hollin Hill
Translating models of electrical resistivity into moisture content

Monitoring frequency: 2 days
3D data acquisition (5x32 =
160 electrodes)

Operational since 2009

@ITIN=RIS

Elevation [M aod|]

Uhlemann et al. (2017), Four-dimensional
imaging of moisture dynamics during
landslide reactivation, JGR: Earth Surf., 122(1)

Measured data
200 ® WMF
® SSF
€ 100 I\/I_och\aﬂl:;idata
=, 80
— SSF
>
g 0
Temp. cor 2 40 r=098
@
o

20
107 r=0.97
0 5 10 15 20 25 30 35
GMC [%]
100
£o}
o
®©
£
c
o
&
©
>
°
Ll

10 20 50 80
' X [m]
Resistivity [Qm]

well drained,
small saturation -~
80 o

poorly drained,
-highly saturated,

0. .20 30 40 50
40 L —

GMC [%]



Resistivity (Ohmm)
- 100

(&)
o

N
o

NI

RRRRRARR AR RRRRR

-29

-50



Long-term geoelectrical monitoring of Hollin Hill

@ITIN=RIS

Imaging hydrological processes that control landslide behavior
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Chambers et al. (2011), Three-dimensional geophysical
anatomy of an active landslide in Lias Group mudrocks,
Cleveland Basin, UK, Geomorphology, 125(4)

Geoelectrical imaging can reveal processes that control landslide movements



Long-term geoelectrical monitoring of Hollin Hill @ITIN=ERIS
Imaging hydrological processes that control landslide behavior
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Long-term geoelectrical monitoring of Hollin Hill @ ITIN=ERIS
Imaging hydrological processes that control landslide behavior .'
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Long-term geoelectrical monitoring of Hollin Hill @ ITIN=ERIS
Using resistivity measurements to obtain landslide displacements |
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Long-term geoelectrical monitoring of Hollin Hill @ ITIN=ERIS
Using resistivity measurements to obtain landslide displacements |
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Long-term geoelectrical monitoring of Hollin Hill
Using resistivity measurements to obtain landslide displacements
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Long-term geoelectrical monitoring of Hollin Hill @ ITIN=ERIS
Using resistivity measurements to obtain landslide displacements .'

4 25 Line 5: Eastern Lotle SAA - 20
® i
E 20 -
X £ e136 | E
-— ~ (&)
8 g
& s §
5 3
o s a
@ g b
Eastern g g
w
> Lobe 3 :
> k-
&
-
2
_20-
@ E 154
f— ']0_
@ IS
$
&

T T T — 1 — 1 T
10 Jan 15 Jan 20 Jan 25 Jan 30 Jan 4 Feb
2014 2014 2014 2014 2014 2014




Assessing variations in geomechanical parameters @ITIN=ERIS
Translating electrical measurements to matric potentials

/" Practical considerations for using petrophysics and geoelectrical methods on clay rich landslides

/~ 1. Geophysics on Landslides N /2. Petrophysics T /3. Joint Interpretation of Slope )
The electrical properties of the ground are Landslides occur due to changes in soil Converting geophysical states (electrical
useful for illuminating the subsurface hydrology. Electrical resistivity resistivity) to matric potential allows for
geology, here we study an active landslide. measurements can be used to help an assement of slope stability.

Electrical Resistivity (Q.m) evaluate stress states in the soil like Matric Potential (kPa)
5. 10 20. = 100, matric potential. 1. 2. 5 0. 20.  50. 100. 200.
[ S | 160 e
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Bovd et al., 2024



https://linkinghub.elsevier.com/retrieve/pii/S0013795224001066

Resistivity (Qm)

Assessing variations in geomechanical parameters

Translating electrical measurements to matric potentials
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https://linkinghub.elsevier.com/retrieve/pii/S0013795224001066

Assessing variations in geomechanical parameters @ITIN=ERIS
Translating electrical measurements to matric potentials
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Assessing variations in geomechanical parameters @ITIN=RIS
Translating electrical measurements to matric potentials
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https://linkinghub.elsevier.com/retrieve/pii/S0013795224001066

Quantitative analysis of geoelectrical monitoring data

Opportunities and limitations

Landslide features

X,y Areal extent of landslide
z  Depth to slip surface Tension features

mz Height of water table (e.g. surface fractures)  Goyng
V¥V  Water table surface l  Bxtape

Infiltration
pathways

-5 X,y

Compression features
(e.g. ridges)

33

-
o*
.
o
.
o

Superficial

materials/

weathered
rock

@ITIN=RIS

Landslide properties

B  Slope angle W Weight
u  Pore water pressure z  Depth to slip surface
o  Total normal stress mz Height of water table
T Shear stress q Flow
V¥ Water table surface
Permeable
layer
Ground _p- "__: \
surface . Bedrock
(impermeable) -
q
- .
sip~Y = — ===
surface

Geophysics can provide continuous subsurface data at high spatial (and temporal) resolution



Quantitative analysis of geoelectrical monitoring data @ ITIN=RIS
Opportunities and limitations
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Quantitative analysis of geoelectrical monitoring data @ITIN=RIS
Opportunities and limitations

Resistivity imaging has limited resolution

0
E o Decreases with increasing distance to electrodes
i
él 4 1. Imaged resistivity may not be the true resistivity
B ciandard array 32 electrodes 2. Lab-scale calibration and field-scale measurements may not
relate to the same processes
Resolution
OW%OO - Applying petrophysical relationships may result in the wrong
values
Measured data - Treat results carefully
200 ® WMF
® SSF o .
— Modelled data Possible ,,solutions*:
é 138 — WMF
Z 60 — Petrophysical joint inversion
E 40 r=0.98 : : :
8 - Invert for petrophysical properties directly
20
- Smoothness constraints will limit the benefit
107 r=0.97 o
0 5 10 15 20 25 30 35 Geostatistical approaches
GMC [%]

Day-Lewis et al., 2005
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Quantitative analysis of geoelectrical monitoring data

Opportunities and limitations
(@)
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@ITIN=RIS

Wagner et al., 2019



https://academic.oup.com/gji/article/219/3/1866/5559534

Hillslope Hydrology @ITIN=RIS |

An integral part to understanding the functioning of mountainous watersheds

Alpine | How do mountainous ,
watersheds retain and release
water, nutrients, carbon and;..--’"“
metals over episodic to decadal
timeframes?

nc ration
Discharge

Time

Montane | Understanding bedrock
characteristics and flowis -
critical to answering this
guestion.

Concentration
Discharge
centration

Discharge

Time

O
@
o

Jan

Time
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The East River Watershed

Area: ~ 300 km?
Average Elevation:
3266 m
Topographic relief:
1420 m

The East River is a major
tributary to the Gunnison
River and in turn the
Colorado River

Supplies water to 40

Million people and
20,000 km?2 of
agricultural land

-130° -120° -110°

-100°







Assessing the hydrological impact of vegetation and bedrock gradients @ 1TIN= =RIS

Going into the mid-elevations of Mt. Snodgrass
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Uhlemann et al. (2024), Bedrock and vegetation gradients
modulate subsurface water flow dynamics of a mountainous
hillslope. Water Resources Research




Subsurface resistivities highlight strong gradient @ITIN=RIS

Transect divided into bedrock and sediments EC [uS/cm] Kest [m/s] Water cont [%] |
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* ERT measurements (1 to 6 times per day) * ERT, soil temperature, and deep
e 1deep + 5 shallow piezometers piezometer data transmitted in near

* Soil moisture, temperature and snow temperature at 6 locations real-time

«  \Weather station * Electrical resistivity sensitive to
changes in moisture content



Environmental monitoring shows strong influence of snowmelt @ ITIN=ERIS

Summer rainfall only leads to water-limited conditions
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Long-term ERT monitoring workflow

Data collection and processing
Monitoring data (up to 6/day)
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@ITIN=RIS

Time-lapse data processing
-> Creating a consistent data set
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Approach:

1. Filtering of data with large (>20%)
reciprocal error

Fitting of linear error model

3. Inverse-distance weighted interpolation =
temporally consistent data set

4. Assignment of large error to interpolated
data




Long-term ERT monitoring requires correction of temp. variation @ITIN=RIS
Workflow and limitations

- : Corrected vs. uncorrected Measured vs. modelled Temp
Aim: Correction of seasonal temperature
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Snowmelt provides large, heterogeneous water input to the system@®ITIN=RIS
Small changes in upper, large changes in lower part

2.00 25

175 | 600 Monitoring of snowmelt of 2022 — measurements twice per day

1.50 A 500 20
= 125 W [ y r4001s5 E E
& 1.00 R [ 5 5 . .
Z 0.75 - 3% 0 Z < Main Observations:
= L2000 3 I

o2  0? « No notable change during the first weeks

0.25 l .

000||| i bl H_.I .I |H|_ I Lo o . . e

202201 2022-02 2022-03 2022-04 2022-05 2022-06 2022-07 2022-08 2022-09 e Snowmelt leads to decrease in re8|st|V|ty

Resistivity * Firstin lower, gentle part

3200 1000.0
E 3180 - oo & * Laterin upper, steep part
j 3160 - oo Z * Horizontal feature coincides with large changes in groundwater

2140 | = level |

32.0
3120 . ; .
0 50 100 150
3200 - .
3200 Change in resistivity F 3180 4 *
c by IR

E 3180 g % l
= v S 3160 1 S
E 3160 - P.orous E m -- - T o *
© Fractured lithology “ 3140 1 l l ll T T

3140 4 bedrock l l l l l

2022-3-27 12:30 3120 i . . .
3120 S0 100 150 200

T T T T
0 50 100 150 200

) Profile Distance [m]
Profile Distance [m]



Snowmelt provides large, heterogeneous water input to the system@®ITIN=RIS
Small changes in upper, large changes in lower part
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Summer monsoon is not providing significant water input @ITIN=RIS
Evapotranspiration larger than recharge leading to drying of surficial soil layer
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Modelling subsurface flow pattern
Model confirms the observations and provides details into recharge pattern

Model Parameterization

@ITIN=RIS

Simplified Ground Model & Modelling result
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Main observations:

Shallow lateral flow characterizes steep, shallow bedrock

Deeper flow at tree locations

Vertical up and downward flow prevails at gentle slope
underlain by colluvium




Modelling subsurface flow pattern
Simplified models show topographic control of some observations

@ITIN=RIS
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Modelling subsurface flow pattern @ ITIN=RIS
Model confirms the observations and provides details into recharge pattern .'

Model Parameterization Simplified Ground Model & Modelling result
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Conclusions

« Snowmelt provides critical input into
hydrological cycle at this site

* Vegetation, bedrock and topographic
characteristics define hydrological dynamics

 Shallow lateral flow characterizes steep,
shallow bedrock, interrupted by more
vertical flow at tree locations

* \Vertical up and downward flow prevails at
gentle slope underlain by colluvium

 High resolution, integrated ERT monitoring
shows detailed hydrological dynamics

Methodological Developments

Novel processing scheme for long-term,
high-resolution ERT data

Spatially variable temperature correction
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Assessing Performance of Sustainable Urban Drainage Systems @ ITIN=RIS
Groundwater recharge to ease urban groundwater stress (

U.S. Drought Monitor California is prone to droughts
California

“Solution”: Managed aquifer
Intensity:
] wone recharge
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[ D1 Moderate Drought . L R ; ; Ta
: % i 7 7.0 o5 |y S

[ 02 severe Droug 1. Provide more stable water ‘- - -
= o Excemonm o supplies during drought ety -
2. Supplement the quantity of
groundwater available
3. Conserve and dispose of runoff
and floodwaters

Fallowed Field

How do you quantify and control
these effects?




Assessing Performance of Sustainable Urban Drainage Systems @ ITIN=RIS |

Groundwater recharge to ease urban groundwater stress Sedimentation
Chamber Pretreatment
) Dry well Stormwater Runoff Feature
SUDS are designed for storm water | |
control '5,":;-.?:;';-.‘5'.'.-
TS T

LA annual rainfall: 508 mm @ 35 = , ow-permeab ay) laye

Precipitation mostly linked to 3 ..

storm events " k2
SUDS come in many different types ‘ ~*'
Actual infiltration patterns are -° :
poorly understood o P
What is the contribution of SUDS to S

urban groundwater recharge?



Assessing Performance of Sustainable Urban Drainage Systems @ ITIN=RIS
Installation of ERT monitoring system at LA County Public Works dry well .'
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Assessing Performance of Sustainable Urban Drainage Systems @ ITIN=RIS
Results of controlled recharge experiment i vim
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Assessing Performance of Sustainable Urban Drainage Systems @ ITIN=RIS

Resistivity [Qm]

Enablmg quantitative assessment Direct measurements of moisture Electrical resistivity time series
content
o ERT 1 o ERT 3 o ERT 1 0- ERT 3
- Changes in resistivity correlate with soil
moisture data
« In-field calibration of resistivity monitoring
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Assessing Performance of Sustainable Urban Drainage Systems @ ITIN=RIS

Enabling quantitative assessment i vom
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ERT monitoring sheds light on urban infrastructure

« Changes in electrical resistivity linked to changes in soil moisture
content

« Resistivity monitoring can be used to assess groundwater
recharge processes

* Drywell setup provides direct input to local aquifer

« Other SUDS types not as effective

Outlook
- Linking observations with hydrological models to quantify the
contribution of SUDS to groundwater recharge

- Extension of monitoring network to assess different SUDS
designs
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