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Outline of the day

*  Geoelectrical monitoring: measurement principles

and properties
. Basic principles, inversion approaches
. Practical considerations

. Examples
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Why electrical and electromagnetic methods? @ ITINERIS

Electrical resistivity tomography surveys Silva et al., 2023

The electrical resistivity of Experimental site —
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* Porosity
e Saturation
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* Grain size distribution
(hydraulic conductivity)

Soil water content (m* m?)
o
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Apparent resistivity (Qm)

Laboratory calibration

* Pore fluid conductivity

/

Wet, warm,
clay-rich, ion-rich
(salty)

Dry, cold,

Res'\SﬂfNM
no clay, ion-depleted



https://www.sciencedirect.com/science/article/pii/S2352009423000202

Electrical resistivity @ ITIN=ERIS

Measurement principle
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Electrical resistivity

Measurement principle

Ohm’s Law describes the electrical potential:
AV = IR
Electrical resistance R depends on
* resistivity of the ground p
and

* the geometry of the electrodes (geometric factor K)

Resistance [Q]: R=p/K

Resistivity [Om]: p=KR = KAI—V

* Units are important! R has units of [QQ] (ohms), K has
units of [m] (metres), p has units of Qm (ohm-metres)

* Note: Electrical resistivity p and electrical conductivity o
are related

o=1/p
o has units of S/m (Siemens per meter)
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Electrical resistivity

The geometric factor K
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The geometric factor can be
calculated based on the known
distances between:

1. theinjection (A, B) dipole and

2. potential measurement (M,N)
dipole

p=RK
-1
K=27‘[(1—1—1+1)
raM TAN BM BN

This is only valid for a homogeneous,
flat half space




Electrical resistivity @ITINERIS
Apparent resistivity (

Field/Lab measurements:

* Measured resistivity = ‘true’ resistivity ONLY over flat homogenous ground
* Subsurface is rarely completely homogenous

— Measurements of “apparent resistivity”

In simple terms: The apparent resistivity is a weighted average of all the resistivities present in the
area of the measurement

Real resistivity distribution Apparent resistivity




Measurement sensitivity @ ITIN=ERIS

Voltages change with position

Features near the surface cause
larger changes in voltage that vary

more rapidly with position




Measurement sensitivity @ ITIN=ERIS
Voltages change with position and depth
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smaller, more slowly varying
changes in voltage

Sensitivity depends on horizontal
position & depth of feature, and

4] on measurement type. Drops off
rapidly with depth. Needed for




Sensitivity (normalized)
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Measurement sensitivity EEEEEEEEEEEECIMNERIE

Sensitivity distributions for different configurations

J) C, Py P, C,

Each measurement array is sensitive to different
parts of the subsurface - spatial sampling of
the subsurface

Areas of high sensitivity and changes in sign
result in high resolution

P.PC
Wenner: c) "

* (Good signal to noise ration
* High horizontal resolution

Pol-Dipole:
* Very good lateral resolution

Schlumberger

* mainly influenced by resistivity distribution
underneath potential electrodes - Vertical
electrical sounding

o
i
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Dipole-Dipole

* Good lateral resolution, large depth of
investigation

* Highresolution

* Affected by variations close to electrodes




Measurement sensitivity > Model Resolution @ITINERIS

The type of measurement determines the model resolution
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Imaging the resistivity distribution
2D Electrical Resistivity Tomography (ERT)

Laptop Instrument Multi-electrode Array
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Resistance measurements
(raw data)

Apparent resistivity
~_pseudosection

Measurements (type, number) and
measurement quality define image resolution
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Forward modelling @ ITINERIS

Predicting the response of the subsurface — simulating synthetic measurements

Measurements,

Forward modelling: d =Gm data

starting with an assumed (usually simplified) model of the geophysical ground S
properties, predict/simulate the data that will be measured A forward problem

Useful for: /

e survey design Ob
servables
 assessing technique suitability Model

» qualitative / semi-quantitative analysis of survey data. \ /

Aninverse problem

Relatively easy! _ _
Physical properties,

unknowns

Forward Modelling
Mudstone n

Sandstone

Physics
Mudstone "o

Subsurface Model Geophysical Measurements



Inverse modelling @ ITIN=ERIS

Predicting the subsurface model from real measurements

Measurements,

Inverse modelling d = Gm data

starting with the measured data, predict the geophysical properties of the
ground (tomographic imaging/subsurface model)

Useful for: /

* quantitative analysis of survey data Ob
servables
* Visualisation Model

e assessing uncertainties \ /

Aninverse problem

Physical properties, M = G~ 1 d

A forward problem

* survey design.

Relatively difficult! e
Slipped Mudstone |
S e e
TEFEEEEEEFEE S EEEREEEFEET
BTEEE R R R R R R Inverse Modelling
LKL >

- Mudstﬁn}e)

Geophysical Measurements Subsurface Model



Inverse modelling

The inverse problem

Aim: Find a model of the electrical properties of the ground that
is consistent with the data

With data covering the whole region of interest, can we work out
the true resistivity distribution of the ground?

+ In theory, yes!

+ It has been proven that this inverse problem has a unique
solution.

« But...

@ITIN=RIS

d=Gm

A forward problem

—

Measurements,
data

Model Observables

"o

Aninverse problem

Physical properties, N = G_ld
unknowns




Inverse modelling @ ITIN=ERIS

Uniqueness (or lack of...)

Conditions for the unique solution are very demanding:

* Must know the voltage distribution across the boundary of the whole region with infinite
accuracy...impossible in Earth Science applications

* For every possible set of current electrodes!

In practice:
* Only cover part of the boundary
* Only use a limited number of electrodes
* Only measure with a limited accuracy (due to noise and instrument limitations)

* Causes non-uniqueness — there are an infinite number of models that fit the data equally well




Inverse modelling @ ITIN=ERIS

Uniqueness (or lack of...)
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Inverse modelling @ ITIN=ERIS

Non-uniqueness — extreme example

Z (m)
3

All these inverse

E % models fit the data
N .
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Inverse modelling ccamsRazor  @®ITIN=RIS

Constraints

- To find a stable solution, apply prior information / constraints

» specific information (e.g. a borehole log, or information on the
location of a feature like a fault or interface) “When fuced with to equally good bypotheses, always

choose the simpler.”

» global characteristics like simplicity or smoothness (Occam’s razor)

True model ----- Smooth model

« Most common constraints are smoothness-based:

Resistivity

* blocky models (tending to have continuous regions with sharp edges,
L1)

* smooth models (properties varies smoothly across regions and edges Distance
are gradational, L2) 81 — 80
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Inverse modelling @ ITIN=ERIS

Constraint examples

Blocky model Smooth model




Inverse modelling

Iterative process

Starting model

.

Calculate sensitivities

.

Update model, subject to
constraints

.

Check predictions
against data

'

Converged?

¢Yes
End

No

@ITIN=RIS



Inverse modelling

Example

Starting model

.

Calculate sensitivities

.

Update model, subject to
constraints

'

Check predictions
against data

'

Converged?

¢Yes
End

No

Misfit

@ITIN=RIS
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Why electrical and electromagnetic methods? @ ITINERIS

Electrical resistivity tomography surveys Silva et al., 2023

The electrical resistivity of Experimental site —
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* Porosity
e Saturation

REEEENEEEO00000NENNN;

* Grain size distribution
(hydraulic conductivity)

Soil water content (m* m?)
o
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1 10 100 1000 10000
Apparent resistivity (Qm)

Laboratory calibration

* Pore fluid conductivity

/

Wet, warm,
clay-rich, ion-rich
(salty)

Dry, cold,

Res'\SﬂfNM
no clay, ion-depleted



https://www.sciencedirect.com/science/article/pii/S2352009423000202

Why electrical and electromagnetic methods? @ ITINERIS

. e e . Electrical resistivity tomography surveys Silva et al., 2023
The electrical resistivity of Experimental site —

Earth materials is highly - : T
sensitive to variations in the : :
hydraulic properties of the

subsurface:
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* Porosity

e Saturation
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e Grain size distribution
(hydraulic conductivity)

Soil water content (m* m?)
o
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Apparent resistivity (Qm)

* Pore fluid condUCtiVity Laboratory calibration

Relatively constant

/

Wet, warm,
clay-rich, ion-rich
(salty)

Dry, cold,
no clay, ion-depleted

Res'\SﬂﬂV\w



https://www.sciencedirect.com/science/article/pii/S2352009423000202
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Field deployment

Components and examples — short term deployment

@ITIN=RIS

5 - s T , N

Considerations:

* Required resolution
* Available instrument capability

* System capability (no of
channels/electrodes)

* Available cables &
electrodes

* Measurementtime vs. process-
dynamics




Field deployment

Components and examples — long term deployments

®ITIN=ERIS

Considerations:

/ * Power requirements of ERT system

* The smaller the better, but sometimes
higher power systems are needed

g i * Howto get the power?

v‘ * Solarpanels, wind turbines, fuel cells
 Backup battery power

BN - * Reliability of ERT system

Real-time data transmission or storage?

Safety?




Field deployment @ITINERIS
Components and examples — long term deployments — systems
“Solar array, 20W

WA~ &, PRIME Instrument:
Site installation

ERT Monitoring
system from
Subsurface
Insights

regulator

Sensor array
~ cables

N Natural
Environment
| Research Council




Field deployment

Components and examples — long term deployments — installation

@ITIN=RIS

— -
Buried cables and electrodes for automated
measurements

Protection against damage by wildlife or
humans

Making sure that electrodes stay in place

For repeat measurements (no permanent
installation) mark electrode locations!
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Field deployment

Components and examples — long term deployments — installation




Field deployment

Components and examples — long term deployments
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@ ITIN=RIS

Remote/automated monitoring is great!

BUT: Systems and components may need
maintenance

Need a maintenance strategy — and money!




Timelapse-inversion strategies

Overview

@ITIN=RIS

Full 4D Inversion

* |nvert the entire time series as one dataset

* Enables implementing true smoothness constraints
acrosstime

* Requires the entire data set to be acquired

Windowed 4D Inversion

e Full 4D Inversion of data subsets

* Allows for near real-time results (no need for entire time
series to be acquired)

1

Timelapse inversion

(. (seansene) wecenens) j

* |Invert one timestep against a baseline

* Constraints to minimize the difference between two
resistivity models

{
‘ esoccoee
\

-

Difference inversion

* Onlyinvert for the differences in the acquired data

* Baseline:invertp, -> timesteps:invertAp, - Dense submatrix D Diagonal submatrix () Zero submatrix




Timelapse-inversion strategies

Overview

Full 4D Inversion

* |nvert the entire time series as one dataset

* Enables implementing true smoothness constraints
acrosstime

* Requires the entire data set to be acquired
Windowed 4D Inversion
e Full4D Inversion of data subsets

* Allows for near real-time results (no need for entire time
series to be acquired)

Timelapse inversion
* |Invert one timestep against a baseline

* Constraints to minimize the difference between two
resistivity models

Difference inversion
* Onlyinvert for the differences in the acquired data

* Baseline:invertp, -> timesteps:invertAp,

@ITIN=RIS
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Timelapse-inversion strategies @ ITINERIS

Overview

Full4dD Ind 3w S>-W FwdTL Fwleff

Time step




Timelapse-inversion strategies

Overview

®ITIN=ERIS

Full 4D Inversion

« Invertthe entire time series as one dataset | [ TTmmmmmmommmmm ]
* Enables implementing true smoothness constraints 9 1l !
across time @
* Requires the entire data set to be acquired § |
3]
Windowed 4D Inversion %
0.1 -
* Full4D Inversion of data subsets < ]
. . . o ~— |nd 3-W =—— 5w ]
Allgws for near re'al—tlme results (no need for entire time g SING R i -
series to be acquired) I T
Timelapse inversion - _W/l\-’j"—’\l' S Y
+ Invert one timestep against a baseline 0 10 20 30 40 50 60
Timestep

* Constraints to minimize the difference between two
resistivity models

Difference inversion * FulldD shows best performance

«  Onlyinvert for the differences in the acquired data * Windowed and timelapse approach similar

* Baseline:invertp, -> timesteps:invertAp, * Difference inversion comparatively bad




Monitoring examples

Munnar landslide investigation
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Monitoring examples

Munnar landslide investigation

® PRIME electrodes
[7 PRIME enclosure

h DEP borehole

% - Landslide backscarp

»Dissolution*
cracks

@ITIN=RIS

Above backscarp Within landslide

Regulator
Modem|_

I

Resistivity |
meter |



Monitoring examples

o =AY @ITIN=RIS
Munnar landslide investigation |
Electrodgs |n|t!ally g0 4a) | . Test Phase 30 b) | Test Phase
deployed in soil . = mEE Operational Phase . EEE Operational Phase
. . | — 25 - |
Tropical soil tends to be 50 G > o
depleted of clay minerals 3 'S = 204 S
X = 50 4 | D g o |
- Very high contact o 1 = 9 57.6%13
: S 40 B 3 151 91.9% 2
resistances E J= s .0
o | = o P
During operational phase, & 307 = T 10 - s
electrodes installed in 20 1 e :
conductive graphite paste 1o g 5 {
I I
0 - : -~ T T : - T

0 5 10 15 20 25 30 0 10 20 30 40 50
Reciprocal Error (%) Contact resistances (kQ)




Monitoring examples —
Munnar landslide investigation @lTlN—R|S
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Monitoring examples @ITIN=RIS |

Munnar landslide investigation
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Monitoring examples

Munnar landslide investigation

@ITIN=RIS

Resistivity (€2,
a1

700 1000 Baseline
Lol a) [T . ‘ ‘
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U/=10 | oovmson -0/~ .07 - (8- 200 A : : : : i )
b) 20]292 ]§) o BT 2019-07-21 2019-07-31 . 2019-08-05 - mam Daily effective rainfall (negative) | i ; 2500 E
o : H %
2000
1500 &
1 [}
: : : : : : 1000 2
i i i ‘ i i i ©
! 4‘ | ! 1 500 3
: : ; : : : : E
sl e 1 TR Y% . - e
11 Jul 31Jul 20Aug  09Sep  29Sep  190ct  08Nov  28Nov  18Dec 07 Jan

© 2019-08-10 2019-08-20 2019-09-09

Geoelectrical monitoring shows
pronounced wetting and drying patterns

2019-10-19 2019-11-28 Particularly above recent landslide domain -

- Increased weathering

High moisture levels reach depth of recent
slip surface

Change in resistivity (%)
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Monitoring examples @ITIN=RIS

Automated monitoring workflows

Wireless
Internet

Router

Command Files * Command Centre
.+ Measurement &
& Schedule from Command Centre : System Health Data and Data Storage

------------------------------------------------------------------------------------------------------------------------------------------------------------------

Web Dashboard§ Image

E . Image . ’

. web, Emair & (§ i Amysis / 5

' en, " y ;

. SMSDelivery LY | | : « Data |

E « Mecite. | Filtering

E : &QA |
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: Sl YV s Moisture Time Resistivity Images Time Motion Sensing Time !
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Monitoring examples

Monitoring the stability of railway infrastructure

Rails
T

N
Thirdrail e, \
Rails
Troughe o, Boteyt i e LR B Section

: Babksgem | | o L

Shoulder / \

e
Plan / P \
Wire fence =

Toe

Number of cables = 3
Number of lines - 10
Electrodes per line = 24
Electrode length = 0.15m
Electrode diameter = 10mm
Wire
Electrode spacing = 1m fenee
Along-line cable spacing = 1.3m
Pigtail = 0.5m

Line spacing = 3m

Line length =23m

Completed 4 - 5 days
Minimally invasive

NO Line block in place
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Monitoring examples
Monitoring the stability of railway infrastructure

@ITIN=RIS

Railway embankment with a history of instability up to the present day

Located on major UK rail line

Botley

Local rotational failure (London Clay)

Purpose of monitoring:

« 10s m scale

« 3D visualisation

* Moisture processes

» Electrode movements
* Increased chance of failure X el

80M 4CH |

n . LA . =
’ W Eastiesgh to Fareham Line
(s — -




Monitoring examples

Monitoring the stability of railway infrastructure

@ITIN=RIS

Rails

* Grid of 10 ERT lines (20.7 x 27 m = ~560 m2) Section
Number of cables = 3

e 240 electrodes (24 per line) Numuarotiines. 10

Electrodes per line = 24
Electrode length = 0.15 m

* 5clusters of geotechnical - hydrological sensors: Electrode diameter = 10 mm e
I I H Electrode spacing = 0.9 m fanee
* Tiltmeters, moisture and suction sensors Along-line cable spacing = 1.3 m
N  Temperature profile bl S
\ Line length =20.7 m -
Thirdrail ... UP PORTSMOUTH DOWN
Rails (black distances relate to installed electrode positions,
Ballast red distances indicate mileage)
Trough- «++....... N 5
S W UPPORTSMOUTH DOWN -
g 1 27 m 1
g - Botley Array 2 Botley Array 1l
Plan 5 T
o
Ll
20.7m
Wire fence - ) = =W rrive
(<] M~ ‘DToel.ﬂ < ™ o~ - !
e g2 2 2 g2 g g ¢g i
J 43 4O O O3 4O 49 3
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Monitoring examples @ITIN=RIS

Monitoring the stability of railway infrastructure

‘t: “::

~2 NR staff LA LN S i ._

al panu Seteioh o Fatehae Ui

Eastleigh to Fareham Line

~5 Socotec staff w— Ly _
~3 BGS staff v p
| — PRIME array pealy i, 'J” WDN-ER—
@ Shallow sensors '? :

@ Temperature proﬁle q




Monitoring examples

Monitoring the stability of railway infrastructure
0

@ITIN=RIS
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Monitoring examples

Monitoring the stability of railway infrastructure
0

Heterogeneous surface
material within slipped

Increased resistivity at
ballast shoulder

Zzone

Increased resistivity
beneath slipped zone

- 80

50
75 20
Z (mASLD 10

-70 7
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Resistivity (ochm.m)
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1000
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200
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Monitoring examples

Monitoring the stability of railway infrastructure
0

@ITIN=RIS

Resistivity (ohm.m)

2000
1000
500

Very low resistivity (<5
ohm.m) areas at surface

200
=100
50

Z (M ASL 10

)

1
05

15

Baseline model:
Y () 01/01/2021

Low resistivity (<12 ohm.m) é:lay—
rich materials




Monitoring examples

Monitoring the stability of railway infrastructure

@ITIN=RIS

Resisivity (ohm.m Rainfall —— Moisture content (point sensor)
O ] / 0 ] / 202 ] 2000 B Effective rainfall —-- Resistivity change at point sensor location (ERT)
Bl 1000 8
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Monitoring e-xamples. @ ITINERIS
Monitoring the stability of railway infrastructure .'
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Monitoring examples

Monitoring the stability of railway infrastructure
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