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Research Focus: Hydrogeophysics Applications:

* Integrated geoelectrical monitoring for water and energy applications
* Development of novel monitoring strategies to address natural hazards

* Optimization methodologies to improve geophysical imaging

* Landslide investigations
* Hydrological processes — Groundwater studies

*  Permafrost degradation
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Outline of the day

Fundamentals of electrical resistivity
measurements

. Electrical properties of soils and rocks

Geoelectrical monitoring: measurement principles
and properties

. Basic principles, inversion approaches
. Practical considerations
. Examples

Quantitative analysis of geoelectrical
monitoring data

. Limitations & opportunities
. Applications

Examples of integrated landslide monitoring
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Why electrical and electromagnetic methods? @ ITINERIS

Electrical resistivity tomography surveys Silva et al., 2023
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https://www.sciencedirect.com/science/article/pii/S2352009423000202

Electrical and electromagnetic methods

Different methods to measure the electro(magnetic) properties

4 different types of measurements to measure electrical and electromagnetic

properties of Earth materials:

Geoelectrics: Changes in electrical resistance or conductivity (the reciprocal of
resistivity) are measured by generating an electric current that flows through the
soil using connected electrodes.

Electromagnetics (EM) respond to almost the same targets as geoelectrics, but
they use time-varying electromagnetic fields rather than electrodes in the ground.
This enables, for example, use from the air.

Magnetotellurics (MT) uses naturally induced currents (e.g. thunderstorms)
whose propagation is measured by EM and resistance methods. This means that
the results go much deeper than EM and geoelectrics.

Ground Penetrating Radar (GPR) records radar waves - a type of electromagnetic
wave - that are reflected from surfaces and provide a more direct picture of the
subsurface - similar to reflection seismology. However, it is usually limited to the
uppermost meters of the ground.

Airborne EM survey
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Electrical and electromagnetic methods

Different methods to measure the electro(magnetic) properties

4 different types of measurements to measure electrical and electromagnetic

properties of Earth materials:

Geoelectrics: Changes in electrical resistance or conductivity (the reciprocal of

resistivity) are measured by generating an electric current that flows through the
soil using connected electrodes.

Electromagnetics (EM) respond to almost the same targets as geoelectrics, but

they use time-varying electromagnetic fields rather than electrodes in the ground.
This enables, for example, use from the air.

Airborne EM survey
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Overview of geophysical methods @ITIN=ERIS
Geophysics = toolbox for many geoscientific applications

Applications
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Gravity Density P P S S S S - - S - -

Magnetic Susceptibility P P P P - m - P P - - P
Seismicrefraction Elastic moduli; density P P m 3 S S - - - - - -
Seismicreflection Elastic moduli; density P P m s S m - - - - - -
Resistivity Resistivity m m P P P P P s P P m X
Self-potential (SP) Potential differences - - P m P m m m - P - -
Induced polarisation (IP) Resistivity; chargeability m m P m s m m m m P m -
Electro-magnetic (EM) Conductance; inductance s P P P P P P P P m m P
Ground penetrating radar (GPR)  Permittivity; conductivity - - m P P P S P P m P S
Magnetic resonance sounding Magnetic moment; porosity - - - - P - m - - - - -
Radiometrics Gamma - radioactivity s S P s - - - - - - - -
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Electrical
properties of soils
and rocks

Resistivity = resistance of
the ground to passing
electrical current



Electrical resistivity of Earth Materials

Conduction processes

An electric current (/) exists due to the transport of electric
charge (q) that results from an applied electric field (E)
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Types of conduction

Electron conduction: charge carried by freely moveable
electrons

Other than in ores, electron conduction can be neglected, and
mineral grains are assumed to be insulators

Electrolytic conduction: via the ions dissolved within the
pore fluid filling the interconnected pore space

Surface conduction: via the ions in the Electrical Double
Layer (DL) that forms at the mineral-fluid interface
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Electrical resistivity of Earth Materials

Conduction processes

An electric current (/) exists due to the transport of electric
charge (q) that results from an applied electric field (E)
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Electron conduction: charge carried by freely moveable
electrons

Other than in ores, electron conduction can be neglected, and

mineral grains are assumed to be insulators
Electrolytic conduction: via the ions dissolved within the
pore fluid filling the interconnected pore space

Surface conduction: via the ions in the Electrical Double
Layer (DL) that forms at the mineral-fluid interface
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Electrical resistivity of Earth Materials BITINZRIS |

Conduction processes

Clay’s internal pore
space:

Extra micro and nano-pore ¢
added to the existing :
intra-granular pores.




Electrical resistivity of Earth Materials

Conduction processes

Resistivity = resistance of the ground to passing
electrical current

Depends on:
 Composition (clay and mineral/metal content)
* Porosity ®

* Moisture content (Saturation §,,)

* Pore fluid conductivity p,,

 Temperature
Models: Composition Fluid
* Archie‘slaw p, = ad® ™S, "p,,

Po = FSu," pw

(no clay)

 Temperature dependence

Pr20°c = Pp(1 + 100 (T20°c — Tsampie))
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Wet, warm,
clay-rich, ion-rich
(salty)

Dry, cold,
no clay, ion-depleted



Electro-petrophysical relationships

A story of water and clay
Model & physical
Problem: properties:

Secure water supply for a school

Dry soil Tp v Vo

Aquifer ¢p Tvp

Bedrock Tp Tvp

B ST TR

Result: Data processing and interpretation:

Geoelectrical measurement:
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Electrical resistivity of Earth Materials @ ITIN=RIS
Landslide features that can be investigated using geophysics |

x,y Areal extent of landslide
z Depth to slip surface

Tension features
mz Height of water table

(e.g. surface fractures)

Ground

V¥ Water table surface & surface
Infiltration
= Xy pathways

Compression features
(e.g. ridges)

Superficial

materials/

weathered
rock

Whiteley et al., 2018



https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018RG000603

Electrical resistivity of Earth Materials @ ITIN=RIS
Landslide features that can be investigated using geophysics — infinite slope model .'

B  Slope angle W Weight

u  Pore water pressure z  Depth to slip surface
o  Total normal stress mz Height of water table
T Shear stress q Flow

V¥V Water table surface

Permeable
layer

z \ Bedrock

" (impermeable)

Ground _p-
surface

Whiteley et al., 2018



https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018RG000603

Electrical resistivity of Earth Materials
Soil properties important for landslide studies

Geophysical property

Electrical resistivity
&
Chargeability

Measured property

Geophysical proxy

Moisture content

Porosity

Clay content

Derived property

Landslide properties

Groundwater table

Pore pressure

Hydraulic conductivity

Soil thickness

Residual friction angle

Cohesion

Derived property
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Archie’s equation @ITIN=RIS
Empirical relationship between the electrical resistivity of rock and pore fluid properties

Cementation exponent

Tortuosity factor *  Related to the pore network,

* Related to path length of current flow connectivity Saturation exponent

* Sensitive to variation in compaction, * Increasing with increasing « Related to the wettability of
pore structure, grain size cementation the rock

* Ranges between0.5t0 1.5 * Ranges between 1.3 -4.1 «  Usually fixed to 2

l /
ps =a® " "S "oy = FS T "pw

/ \ N

Bulk resistivity . Saturation Formation factor
Porosity

Pore water resistivity



Sensitivity of Archie’s equation @ITIN=RIS
Varying impact on the bulk resistivity

300

e Soil resistivity very sensitive to Saturation and
Porosity

250 4

* Also sensitive to cementation and pore-water
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Sensitivity of Archie’s equation @ITIN=RIS
Effect of saturation and porosity |

. - . 0.5 109‘
Increasing saturation and porosity decreases
the resistivity 108
- Resistivity is sensitive to changes in 0.4 107
moisture content
108
- Drying will decrease saturation and
increase resistivity 20 :
- Higher sensitivity to changes in 10*
saturation than to porosity
0.2 10°
10°
0.1 10!
10°
0.2 0.4 0.6 0.8 1.0

Saturation

=
o

i
Resistivity [Qm]

Porosity



Summary of Archie’s equation @ITIN=RIS
Benefits and Drawbacks

Benefits Drawbacks |
 Easyformula « Considers electrolytic conduction
only

 Limited amount of variables

 Not suitable for rocks and soils
containing clays (surface
conductivity)

 Good approximation for clean rocks
(sandstone/limestone/igneous rocks)




Waxman-Smits equation @ITIN=ERIS
Accounting for surface conduction

| - Cation
on mobility concentration

\ /perunitvolume
F(1 Ba)"
S"\pw S

. Particle density

N

100(1) Cation exchange capacity

Measure of how many cations
can be retained on soil particle

1 surfaces
B — 4_6 (1 — 0_66 1.3pw) * Unit: cmol./kg

Ps — FS_HPW + Psurface —

Qv




Waxman-Smits equation @ ITIN=RIS
Cation-Exchange capacity linked to clay content

* Resistivity decreases with increasing Cation 102
Exchange Capacity = increasing clay content

* Even small amounts of clay lower the
resistivity considerably

* Clay content is an important parameter
for electro-petrophysical relationships

Electrical Resistivity [Qm]

lDI} i

0 50 100 150 200 250 300 350 400
Cation Exchange Capacity [cmol:/kg]



Electro-petrophysical relationships @ITIN=RIS
A story of water and clay .'

* Resistivity of soils is very sensitive to changes in moisture content and clay content

* Monitoring: Clay content can usually be assumed to be constant over time.

* This does not mean that we can neglect surface conduction in monitoring applications. Contribution
depends also on the saturation and the pore fluid conductivity!
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Electrical resistivity of Earth Materials
Soil properties important for landslide studies

Geophysical property

Electrical resistivity
&
Chargeability

Measured property

Geophysical proxy

Moisture content

Porosity

Clay content

Derived property

Landslide properties

Groundwater table

Pore pressure

Hydraulic conductivity

Soil thickness

Residual friction angle

Cohesion

Derived property
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Lab measurements to determine the resistivity of soils or rocks @ ITIN=ERIS
Establishing petrophysical relationships |

Current electrodes
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Establishing petrophysical relationships

Fitting model to the data

Samples have undergone wetting and drying
cycles

Resistivity measured at different stages

Waxman-Smits model fitted to the data, i.e.

finding model parameters by minimizing the
difference between model and data

* Known data:
* Particle/Water density
« CEC

* Pore water conductivity
* (Porosity)

* Unknown:
* Formation factor
e Saturation exponent
* (Porosity)

Resistivity [Q m]
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Assessing variations in geomechanical parameters @ITIN=ERIS
Translating electrical measurements to matric potentials

/" Practical considerations for using petrophysics and geoelectrical methods on clay rich landslides

/~ 1. Geophysics on Landslides N /2. Petrophysics T /3. Joint Interpretation of Slope )
The electrical properties of the ground are Landslides occur due to changes in soil Converting geophysical states (electrical
useful for illuminating the subsurface hydrology. Electrical resistivity resistivity) to matric potential allows for
geology, here we study an active landslide. measurements can be used to help an assement of slope stability.

Electrical Resistivity (Q.m) evaluate stress states in the soil like Matric Potential (kPa)
5. 10 20. = 100, matric potential. 1. 2. 5 0. 20.  50. 100. 200.
[ S | 160 e
140 1 Areas of .
Upslope, 4 low matric | _Z8SEE
Electrode o 120 rmmmmmmmmm et g e O S
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\

Bovd et al., 2024



https://linkinghub.elsevier.com/retrieve/pii/S0013795224001066

Linking geophysical with hydrogeomechanical parameters @ITIN=ERIS
Summary

2016-04-11

Electro-geophysical properties are highly
sensitive to variations in moisture content
= saturation

Measured value: electrical resistivity p (or — e o T e
changes in p) L :

Petrophysical relationships, e.g., Archie‘s
law or Waxman-Smits model, link resistivity
with formation and fluid properties
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No direct measurements of 2016-06-18

hydrogeomechanical parameters! Only
proxy measurements.
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Geophysical measurements and monitoring

provides high resolution data that needs to
be treated carefully! ‘ l
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Link to other observations (boreholes,
environmental data, remote sensing data, ...) Property translation

(introducing uncertainty)
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